
Adding a new embedder to CaGe

This text will walk you through the different steps to add a new embedder to CaGe in a non-
invasive way, i.e. without needing to have or update any of the source files of CaGe. At the
moment this means that you will use the native embedder that is supplied with CaGe. The
native doesn't mean that you can't use Java to write your embedder. This embedder just uses
Java Native Interface (JNI) to start up the generators in a separate process. At the moment
there is no support for other embedders.

Preparation

The first you will have to do is to turn on the expert mode of CaGe. You can do this by opening
the file CaGe.ini that you will find in the directory that contains your CaGe installation. Locate
the following line in this file:

CaGe.ExpertMode: false

Replace the false in this line with true. If this property is already set to true, then the expert
mode is already turned on and you can proceed immediately. Basically what this expert mode
does, is give you the ability to edit the generator and embedder commands for each of the
generators prior to starting the generation process. Just proceed to the output panel of any
generator after turning on the expert mode. At the top of the panel you will see three text
boxes that allow you to see and/or alter the commands for the generator, the 2D embedder
and the 3D embedder.

What goes in?

An important thing you need to know before you can write your own embedder is, of course,
the format in which you will receive the graphs. Basically what you will receive from CaGe
is a file containing the graph in the writegraph format. Depending on you're choice of type
of embedding this will be a writegraph3d or writegraph2d file. However in both cases all the
coordinates will be zero.
You can also easily see the input you will receive. First choose the generator you want,
then proceed to the output panel. Before the embedder commands you add the following
command:

tee -a WhatGoesIn |

So if the original embed command was:

embed

It will now be:

tee -a WhatGoesIn | embed

The tee command reads from standard in, and writes its input both to the specified file and
standard out. So when the graphs are embedded, the file WhatGoesIn will contain the input
that the embedder received from CaGe.

What comes out?

Another important thing is the format you need to supply back to CaGe. Depending on the
dimension this will be a writegraph3d or a writegraph2d file. Again you can use the tee
command to view an example of this. This time you simply pipe the output of the embedder
into tee, e.g.

embed | tee -a WhatComesOut

The writegraph format

This format originated from Combinatorica, a Mathematica package. It is a plain-text format
and easily readable for humans. CaGe always uses this format for embedded graphs.
A file in writegraph format may start with a header, but this is not mandatory. It is however
advised to do this. If you have followed the previous steps, you will already have seen
that CaGe and its current embedder always include this header. This header always has the
following form

>>__<<

In this header the __ is replaced by the specific format. There are three options for this:
writegraph, writegraph2d and writegraph3d depending on the number of coordinates
supplied per vertex (respectively 0, 2 and 3).
After the header there is one line for each vertex, and this line contains, separated by white
space,

• the vertex number (sequentially numbered, starting with one)
• vertex coordinates,
• the numbers of all vertices adjacent to the current one.

Since we deal with lists of graphs, we define a line containing just the number zero as the
separator between two graphs (as zero is not a valid vertex number). When writing graphs
to the embedder they will be passed on one-at-a-time. So for the embedder a line containing
just the number zero might be seen as the end of the file.

The right place

The final thing you need to know is the correct directory to place your embedders file in. This
is determined by the property CaGe.Generators.Path in the file CaGe.ini. By default this is
set to the directory Generators in the directory that contains your CaGe installation and all

the directories in the environment variable PATH. It is your own choice whether you add a
directory to this list or just move your files to one of the available directories.
Your embedder will normally not be ran in the directory it is placed in, but will be ran in
the directory specified by the property CaGe.Generators.RunDir in the file CaGe.ini. This is
important if, e.g., you want to run an embedder written in Java. The java command will run
in the specified directory and so, the classpath will also be resolved from that directory.

Some examples

import java.util.Random;
import java.util.Scanner;

/**
* Reads a graph in writegraph2d or writegraph3d from standard in

and writes a random embedded graph
* to standard out.
* @author nvcleemp
*/

public class RandomEmbedder {

private static final Random RANDOM = new Random();

public static void main(String[] args) {
Scanner in = new Scanner(System.in);
String header = in.nextLine().trim();
int dimension = 0;
if (header.equals(">>writegraph2d<<")) {

dimension = 2;
} else if (header.equals(">>writegraph3d<<")) {

dimension = 3;
} else {

System.err.println("Error: RandomEmbedder needs a valid
header.");

System.exit(1);
}
System.out.println(header);
while (in.hasNextLine()) {

String line = in.nextLine().trim();
if (!line.equals("0")) {

String[] vertex = line.split("\\s+");
if (vertex.length < dimension + 1) {

System.err.println("Error: Illegal format in
input file.");

System.exit(1);
}
for (int i = 0; i < dimension; i++) {

vertex[1 + i] =
Double.toString(RANDOM.nextDouble()*5);

}
for (int i = 0; i < vertex.length; i++) {

System.out.print(vertex[i]);

System.out.print(" ");
}
System.out.println();

}
}
System.out.println("0");

}
}

If you place this compiled file in the directory Generators in the CaGe installation directory
and the run directory is set to the installation directory, then you can use this generator
with the following command:

java -cp Generators RandomEmbedder

The default embedders

CaGe ships with some default embedders. Some are very general, other are more specific.
Below you'll find an overview of these embedders.

embed

This is an embedder that is optimized for chemical graphs, but also returns good results for
various other graphs. It is written in C. It is capable of embedding both in 2D and in 3D. One
of its more interesting options if you want to add your own embedder to CaGe, is that this
graph can take an already embedded graph and try to improve that embedding. To do this
you use the option -i and pass it the parameter k, e.g.:

embed -i k

This tells embed that it should keep the initial embedding of the file it receives. Otherwise
embed will try to find a suitable initial embedding. For more information you can use the
following command to get a usage message:

embed -h

cage.embedder.NanoconeEmbedder/
cage.embedder.NanotubeEmbedder

This is an embedder developped specifically for the embedding of nanocones (resp.
nanotubes) in 3D. It has been written in Java and is packed in the jar file CaGe.jar. A
drawback of this at the moment is that only native embedders are supported. Therefore
caGe will start a complete JVM in a separate process each time a graph needs to be
embedded with this embedder. This is something that will receive our attention in the
future.

These embedders are a good example of how an embedder written in Java can be used in
CaGe. e.g. the embedder for nanotube is used with the following embed command:

java -cp CaGe.jar cage.embedder.NanotubeEmbedder

	Adding a new embedder to CaGe
	Preparation
	What goes in?
	What comes out?
	The writegraph format
	The right place
	Some examples
	The default embedders
	embed
	cage.embedder.NanoconeEmbedder/cage.embedder.NanotubeEmbedder

