On Longest Cycles in Essentially 4-connected Planar Graphs

J. Harant

TU Ilmenau, Germany

(joint work with I. Fabrici and S. Jendrol’, Košice, Slovakia)

Gent, August 2016
All graphs G considered here are *polyhedral*, i.e. planar and 3-connected.

- $n = n(G)$ - order of G
- $\text{circ}(G)$ - length of a longest cycle of G (circumference of G)
- If $\text{circ}(G) = n$, then G is *hamiltonian* and a longest cycle is a *hamiltonian cycle*.
All graphs G considered here are *polyhedral*, i.e. planar and 3-connected.

- $n = n(G)$ - order of G
- $\text{circ}(G)$ - length of a longest cycle of G (circumference of G)
- If $\text{circ}(G) = n$, then G is *hamiltonian* and a longest cycle is a *hamiltonian cycle*.
All graphs G considered here are polyhedral, i.e. planar and 3-connected.

- $n = n(G)$ - order of G
- $\text{circ}(G)$ - length of a longest cycle of G (circumference of G)
- If $\text{circ}(G) = n$, then G is hamiltonian and a longest cycle is a hamiltonian cycle.
All graphs G considered here are \textit{polyhedral}, i.e. planar and 3-connected.

- $n = n(G)$ - order of G
- $\text{circ}(G)$ - length of a longest cycle of G (\textit{circumference} of G)
- If $\text{circ}(G) = n$, then G is \textit{hamiltonian} and a longest cycle is a \textit{hamiltonian cycle}.
There are infinitely many maximal planar graphs G with

$$\text{circ}(G) \leq 9n(G)^{\log_3 2} \quad (\log_3 2 = 0.6309...).$$

- Is the exponent $\log_3 2$ smallest possible for maximal planar graphs?
- Can $\log_3 2$ be decreased if arbitrary polyhedral graphs are considered?
- Later the coefficient 9 was decreased several times.
Circumference $\text{circ}(G)$ of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$\text{circ}(G) \leq 9n(G)^{\log_3 2} \quad (\log_3 2 = 0.6309...).$$

- Is the exponent $\log_3 2$ smallest possible for maximal planar graphs?
- Can $\log_3 2$ be decreased if arbitrary polyhedral graphs are considered?
- Later the coefficient 9 was decreased several times.
Circumference $\text{circ}(G)$ of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$\text{circ}(G) \leq 9 n(G)^{\log_3 2} \quad (\log_3 2 = 0.6309\ldots).$$

- Is the exponent $\log_3 2$ smallest possible for maximal planar graphs?
- Can $\log_3 2$ be decreased if arbitrary polyhedral graphs are considered?
- Later the coefficient 9 was decreased several times.
Circumference $\text{circ}(G)$ of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$\text{circ}(G) \leq 9 n(G)^{\log_3 2} \quad (\log_3 2 = 0.6309...).$$

- Is the exponent $\log_3 2$ smallest possible for maximal planar graphs?
- Can $\log_3 2$ be decreased if arbitrary polyhedral graphs are considered?
- Later the coefficient 9 was decreased several times.
Circumference $\text{circ}(G)$ of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$\text{circ}(G) \leq 9n(G)^{\log_3 2} \quad (\log_3 2 = 0.6309...).$$

G. Chen and X. Yu, 2002

There is a positive constant c such that

$$\text{circ}(G) \geq c \cdot n(G)^{\log_3 2}$$

for an arbitrary polyhedral graph G on n vertices.

T. Tutte, 1956

A 4-connected planar graph is hamiltonian.
Circumference $circ(G)$ of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$circ(G) \leq 9 n(G) \log_3 2 \quad (\log_3 2 = 0.6309...).$$

G. Chen and X. Yu, 2002

There is a positive constant c such that $circ(G) \geq c \cdot n(G) \log_3 2$ for an arbitrary polyhedral graph G on n vertices.

T. Tutte, 1956

A 4-connected planar graph is hamiltonian.
What happens between 3-connected and 4-connected?

Definition

A graph G is essentially 4-connected if G is 3-connected and each 3-separator forms the neighborhood of a vertex of degree 3.
What happens between 3-connected and 4-connected?

Definition

A graph \(G \) is essentially 4-connected if \(G \) is 3-connected and each 3-separator forms the neighborhood of a vertex of degree 3.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$.
 (Jackson, Wormald 1992)

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic.
 (Grüenbaum, Malkevitch 1976, Zhang 1987)

- If $c > \frac{2}{3}$, then there is an infinite family of graphs G such that $\text{circ}(G) \leq c \cdot n(G)$.
 (Jackson, Wormald 1992)

- The last statement is even true for maximal planar graphs.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$.
 (Jackson, Wormald 1992)

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic.
 (Grünbaum, Malkevitch 1976, Zhang 1987)

- If $c > \frac{2}{3}$, then there is an infinite family of graphs G such that $\text{circ}(G) \leq c \cdot n(G)$.
 (Jackson, Wormald 1992)

- The last statement is even true for maximal planar graphs.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G) + 4}{5}$.
 (Jackson, Wormald 1992)

- $\text{circ}(G) \geq \frac{3}{4} n(G)$ if G is cubic.
 (Grünbaum, Malkevitch 1976, Zhang 1987)

- If $c > \frac{2}{3}$, then there is an infinite family of graphs G such that $\text{circ}(G) \leq c \cdot n(G)$.
 (Jackson, Wormald 1992)

- The last statement is even true for maximal planar graphs.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$.
 (Jackson, Wormald 1992)

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic.
 (Grünbaum, Malkevitch 1976, Zhang 1987)

- If $c > \frac{2}{3}$, then there is an infinite family of graphs G such that $\text{circ}(G) \leq c \cdot n(G)$.
 (Jackson, Wormald 1992)

- The last statement is even true for maximal planar graphs.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$.
 (Jackson, Wormald 1992)

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic.
 (Grünbaum, Malkevitch 1976, Zhang 1987)

- If $c > \frac{2}{3}$, then there is an infinite family of graphs G such that $\text{circ}(G) \leq c \cdot n(G)$.
 (Jackson, Wormald 1992)

- The last statement is even true for maximal planar graphs.
A 4-connected maximal planar graph G' on 32 vertices.
2 \times 32 - 4 = 60 \text{ red vertices}
A essentially 4-connected maximal planar graph G on $32 + 2 \times 32 - 4 = 92$ vertices.
- G has 32 black vertices
- the red vertices are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices
- G has 32 black vertices
- the red vertices are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices
G has 32 black vertices

the red vertices are independent

a longest cycle of G has at most \(2 \times 32 = 64\) vertices

there is a cycle on 64 vertices
- G has 32 black vertices
- the *red vertices* are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices
- G has 32 black vertices
- the red vertices are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices
Infinitely many essentially 4-connected maximal planar graphs G with $\text{circ}(G) \leq \frac{2n(G)+8}{3}$

- G' - a 4-connected maximal plane graph on n' vertices.
- G - obtained from G' by inserting a new vertex into each face of G' and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on $n = n' + (2n' - 4)$ vertices.
- The $2n' - 4$ vertices in $V(G) \setminus V(G')$ are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.
Infinitely many essentially 4-connected maximal planar graphs G with $\circ(G) \leq \frac{2n(G)+8}{3}$

- G' - a 4-connected maximal plane graph on n' vertices.
- G - obtained from G' by inserting a new vertex into each face of G' and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on $n = n' + (2n' - 4)$ vertices.
- The $2n' - 4$ vertices in $V(G) \setminus V(G')$ are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.
Infinitely many essentially 4-connected maximal planar graphs G with $\text{circ}(G) \leq \frac{2n(G)+8}{3}$

- G' - a 4-connected maximal plane graph on n' vertices.
- G - obtained from G' by inserting a new vertex into each face of G' and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on $n = n' + (2n' - 4)$ vertices.
- The $2n' - 4$ vertices in $V(G) \setminus V(G')$ are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.
Infinitely many essentially 4-connected maximal planar graphs G with $\text{circ}(G) \leq \frac{2n(G)+8}{3}$

- G' - a 4-connected maximal plane graph on n' vertices.
- G - obtained from G' by inserting a new vertex into each face of G' and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on $n = n' + (2n' - 4)$ vertices.
- The $2n' - 4$ vertices in $V(G) \setminus V(G')$ are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.
Infinitely many essentially 4-connected maximal planar graphs G with $\text{circ}(G) \leq \frac{2n(G)+8}{3}$

- G' - a 4-connected maximal plane graph on n' vertices.
- G - obtained from G' by inserting a new vertex into each face of G' and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on $n = n' + (2n' - 4)$ vertices.
- The $2n' - 4$ vertices in $V(G) \setminus V(G')$ are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.
Infinitely many essentially 4-connected maximal planar graphs G with $\text{circ}(G) \leq \frac{2n(G)+8}{3}$

- G' - a 4-connected maximal plane graph on n' vertices.
- G - obtained from G' by inserting a new vertex into each face of G' and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on $n = n' + (2n' - 4)$ vertices.
- The $2n' - 4$ vertices in $V(G) \setminus V(G')$ are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992
 There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77}n(G)$.

(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

(ii) $\text{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.

(iii) $\text{circ}(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992
 There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.

- $\text{circ}(G) \geq \frac{3}{4} n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77} n(G)$.

(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

(ii) $\text{circ}(G) \geq \frac{3}{5} n(G)$ if $\Delta = 4$.

(iii) $\text{circ}(G) \geq \frac{13}{21} (n(G) + 4)$ if G is maximal planar.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992
- There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.
- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987
- There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77}n(G)$.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$</td>
</tr>
<tr>
<td>(ii) $\text{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$</td>
</tr>
<tr>
<td>(iii) $\text{circ}(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar</td>
</tr>
</tbody>
</table>
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992
 There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77}n(G)$.

(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

(ii) $\text{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.

(iii) $\text{circ}(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992

There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987

There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77}n(G)$.

(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

(ii) $\text{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.

(iii) $\text{circ}(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992
 There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77}n(G)$.

(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

(ii) $\text{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.

(iii) $\text{circ}(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.
Let G be polyhedral and essentially 4-connected.

- $\text{circ}(G) \geq \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992

 There is an infinite family of essentially 4-connected maximal planar graphs G such that $\text{circ}(G) \leq \frac{2n(G)+8}{3}$.

- $\text{circ}(G) \geq \frac{3}{4}n(G)$ if G is cubic - Grünbaum, Malkevitch 1976, Zhang 1987

 There is an infinite family of essentially 4-connected cubic planar graphs G such that $\text{circ}(G) \leq \frac{76}{77}n(G)$.

(i) $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

(ii) $\text{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.

(iii) $\text{circ}(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.
A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

Let C be a longest OI3-cycle of G.

For each edge xy of C, x and y do not have a common neighbor in $int(C) \cap V(G)$.

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

$n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \leq 2|V(C)| - 4$.
A cycle C of G is an *outer-independent-3-cycle* (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

Let C be a longest OI3-cycle of G.

For each edge xy of C, x and y do not have a common neighbor in $int(C) \cap V(G)$.

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

$n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \leq 2|V(C)| - 4$.

$n(G) = \frac{n(G) + 4}{2}$.

J. Harant

On Longest Cycles in Essentially 4-connected Planar Graphs
Sketch of the proof of $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

 - Let C be a longest OI3-cycle of G.
 - For each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$.

- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $n(G) = |V(C)| + |\text{int}(C) \cap V(G)| + |\text{ext}(C) \cap V(G)| \leq 2|V(C)| - 4$.

J. Harant

On Longest Cycles in Essentially 4 - connected Planar Graphs
A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

Let C be a longest OI3-cycle of G.

For each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$.

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

$n(G) = |V(C)| + |\text{int}(C) \cap V(G)| + |\text{ext}(C) \cap V(G)| \leq 2|V(C)| - 4$.

$n(G) = \frac{n(G) + 4}{2}$.

Sketch of the proof of $\text{circ}(G) \geq \frac{n(G) + 4}{2}$.

J. Harant

On Longest Cycles in Essentially 4-connected Planar Graphs
A cycle C of G is an \textit{outer-independent-3-cycle} (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

Let C be a longest OI3-cycle of G.

For each edge xy of C, x and y do not have a common neighbor in $int(C) \cap V(G)$.

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

$n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \leq 2|V(C)| - 4$.
A cycle C of G is an *outer-independent-3-cycle* (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

Let C be a longest OI3-cycle of G.

For each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$.

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

$n(G) = |V(C)| + |\text{int}(C) \cap V(G)| + |\text{ext}(C) \cap V(G)| \leq \frac{n(G)+4}{2}$.
Sketch of the proof of $\text{circ}(G) \geq \frac{n(G)+4}{2}$.

- A cycle C of G is an *outer-independent-3-cycle* (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.

- Let C be a longest OI3-cycle of G.

- For each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$.

- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $n(G) = |V(C)| + |\text{int}(C) \cap V(G)| + |\text{ext}(C) \cap V(G)| \leq 2|V(C)| - 4$.
Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- If $|\text{int}(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on $|V(C)|$.
- If $|V(C)| \leq 5$, then, obviously, $|\text{int}(C) \cap V(G)| = 0$.

![Diagram of cycle C](image-url)
Proof of Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- If $|\text{int}(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on $|V(C)|$.
- If $|V(C)| \leq 5$, then, obviously, $|\text{int}(C) \cap V(G)| = 0$.

![Diagram of a cycle](image)
Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- If $|\text{int}(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on $|V(C)|$.
- If $|V(C)| \leq 5$, then, obviously, $|\text{int}(C) \cap V(G)| = 0$.
Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- If $|\text{int}(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on $|V(C)|$.
- If $|V(C)| \leq 5$, then, obviously, $|\text{int}(C) \cap V(G)| = 0$.

![Triangle Cycle](image)
Lemma: If \(C \) is a cycle of a plane graph \(G \) on at least 4 vertices such that \(\text{int}(C) \cap V(G) \) is an independent set of vertices of degree 3 in \(G \) and, for each edge \(xy \) of \(C \), \(x \) and \(y \) do not have a common neighbor in \(\text{int}(C) \cap V(G) \), then

\[
|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4).
\]

- \(|V(C)| \geq 6 \) and \(|\text{int}(C) \cap V(G)| > 0 \).

\[
\begin{align*}
|\text{int}(C_i) \cap V(G)| &\leq \frac{|V(C_i)|}{2} - 2 \text{ for } i = 1, 2, 3 \text{ (ind. hyp.)}. \\
|V(C_1)| + |V(C_2)| + |V(C_3)| &= |V(C)| + 6. \\
|\text{int}(C_1) \cap V(G)| + |\text{int}(C_2) \cap V(G)| + |\text{int}(C_3) \cap V(G)| &= |\text{int}(C) \cap V(G)| - 1.
\end{align*}
\]
Lemma: If \(C \) is a cycle of a plane graph \(G \) on at least 4 vertices such that \(\text{int}(C) \cap V(G) \) is an independent set of vertices of degree 3 in \(G \) and, for each edge \(xy \) of \(C \), \(x \) and \(y \) do not have a common neighbor in \(\text{int}(C) \cap V(G) \), then\[|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4). \]

- \(|V(C)| \geq 6\) and \(|\text{int}(C) \cap V(G)| > 0\).

\[
\begin{align*}
|\text{int}(C_1) \cap V(G)| &\leq \frac{|V(C_i)|}{2} - 2 \text{ for } i = 1, 2, 3 \text{ (ind. hyp.)}. \\
|V(C_1)| + |V(C_2)| + |V(C_3)| &= |V(C)| + 6. \\
|\text{int}(C_1) \cap V(G)| + |\text{int}(C_2) \cap V(G)| + |\text{int}(C_3) \cap V(G)| &= \text{int}(C) \cap V(G) | - 1.
\end{align*}
\]
Proof of

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then $|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $|V(C)| \geq 6$ and $|\text{int}(C) \cap V(G)| > 0$.

- $|\text{int}(C_i) \cap V(G)| \leq \frac{|V(C_i)|}{2} - 2$ for $i = 1, 2, 3$ (ind. hyp.).

- $|V(C_1)| + |V(C_2)| + |V(C_3)| = |V(C)| + 6$.

- $|\text{int}(C_1) \cap V(G)| + |\text{int}(C_2) \cap V(G)| + |\text{int}(C_3) \cap V(G)| = |\text{int}(C) \cap V(G)| - 1$.
Proof of

Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that $\text{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in $\text{int}(C) \cap V(G)$, then
\[|\text{int}(C) \cap V(G)| \leq \frac{1}{2} (|V(C)| - 4). \]

- $|V(C)| \geq 6$ and $|\text{int}(C) \cap V(G)| > 0$.

- $|\text{int}(C_i) \cap V(G)| \leq \frac{|V(C_i)|}{2} - 2$ for $i = 1, 2, 3$ (ind. hyp.).
- $|V(C_1)| + |V(C_2)| + |V(C_3)| = |V(C)| + 6$.
- $|\text{int}(C_1) \cap V(G)| + |\text{int}(C_2) \cap V(G)| + |\text{int}(C_3) \cap V(G)| = |\text{int}(C) \cap V(G)| - 1.$
Thank you for your attention!