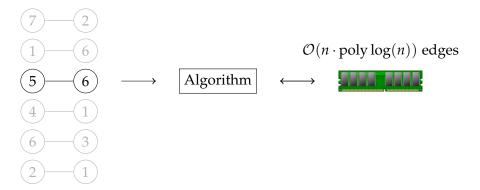
A Streaming Algorithm for the Undirected Longest Path Problem

Lasse Kliemann, Christian Schielke, Anand Srivastav Christian-Albrechts-Universität zu Kiel Institut für Informatik Christian-Albrechts-Platz 4 24118 Kiel, Germany contact: lasse@lassekliemann.de

Based on our ESA 2016 publication.

Graph Streaming Model



pass $\stackrel{\text{def}}{=}$ each edge is presented to the algorithm exactly once goal: number of passes $\mathcal{O}(1)$

Graph Streaming Model

- undirected, simple graph G = (V, E) with n vertices
- ▶ RAM for just $\Theta(n \cdot \text{poly log}(n))$ edges at a time
- only sequential access to graph, a pass means seeing each edge once

relatively easy tasks to do in one pass:

- ightharpoonup determine degree sequence $(\deg(v))_{v \in V}$
- spanning tree
- minimum spanning tree
- ► compute a 1/2 approximation of a maximum matching that is, an inclusion-maximal matching

Obvious Limitations

what we do not know how to do in $\mathcal{O}(1)$ passes:

- ▶ full BFS (proven lower bound, Guruswami and Onak, 2013)
- ▶ DFS up to depth $\mathcal{O}(1)$

Shortest Paths

- a $\rho := \frac{\log(n)}{\log \log(n)}$ approximation for shortest paths:
- 1) start with empty graph $S := K_0$
- 2) for each edge e in the stream: S := S + e if that does not create a cycle shorter than ρ

analysis:

- ▶ extremal graph theory: *S* has only $O(n \cdot \log(n))$ edges
- S is a ρ spanner,
 i. e., shortest paths in S are at most factor ρ longer than in G

Algorithms for Undirected Longest Paths

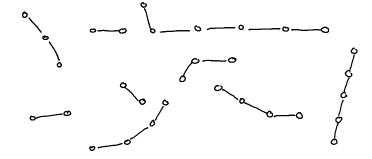
- Warnsdorf (1823), Pohl-Warnsdorf (1967):
 DFS prioritizing neighbors with few unvisited neighbors
- Pongrácz (2012):
 DFS prioritizing neighbors with large distance to fixed vertex
- ► Color coding (Alon et al. 1995)
- Björklund-Husfeldt (2003): decomposition into long cycles connected by paths
- ► Gabow-Nie (2008): extension of Björklund-Husfeldt technique

Streaming Algorithm for Undirected Longest Path

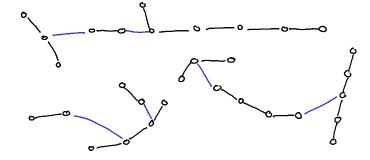
- 1.) construct τ spanning trees T_1, \ldots, T_{τ} with degree limiting
- 2.) find long path *P* in $U = \bigcup_{i=1}^{\tau} T_i$ with Warnsdorf's rule in RAM
- 3.) extend *P* to a spanning tree *T*
- 4.) improve diameter of *T* by a number of passes; for each edge *e*:
 - i. consider T' := T + e, which contains one cycle C
 - ii. find $e' \in C$ such that diameter of T' e' is maximum

Lemma: step ii can be implemented in $\mathcal{O}(n)$ time.

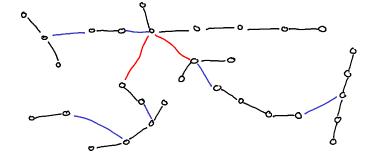
Degree Limit D = 2



Degree Limit D = 3



Degrees Unlimited



Streaming Algorithm for Undirected Longest Path

- 1.) construct τ spanning trees T_1, \ldots, T_{τ} with degree limiting
- 2.) find long path *P* in $U = \bigcup_{i=1}^{\tau} T_i$ with Warnsdorf's rule in RAM
- 3.) extend *P* to a spanning tree *T*
- 4.) improve diameter of *T* by a number of passes; for each edge *e*:
 - i. consider T' := T + e, which contains one cycle C
 - ii. find $e' \in C$ such that diameter of T' e' is maximum

Lemma: step ii can be implemented in $\mathcal{O}(n)$ time.

- ▶ in phase 1, start the first pass at a random position in the stream
- ▶ in phase 4, skip edges with both endpoints on longest path

Experiments

Random graphs with various structure:

- power law degree distribution:
 Barabási-Albert (preferential attachment), hyperbolic geometric
- small world (degrees distributed evenly)
- chains

Results for $\tau = 2$, degree limits $(2, 2, 3, \infty)$, and 3 improvement passes:

- excluding preferential attachment graphs, obtain 71% of best solution
- ▶ without restriction, after removing 10% worst cases, still obtain 71% of best solution
- without restriction, after removing 50% worst cases, obtain 81% of best solution
- on chain graphs, we are always the best

Challenges

- make it faster:
 - currently about 1 second per 100 edges (for $n = 1 \times 10^5$ vertices)
 - ▶ 10 days for 1×10^9 edges
- analyze it?