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One would expect more edges to make the existence of Hamiltonian cycles more likely. Nev-
ertheless, looking at what is known, polyhedra and the subset of triangulations (of the plane)
seem to behave the same: though polyhedra can have as few as 2|V| edges while triangulations
have 3|V| — 6 edges, both are guaranteed to be Hamiltonian if they have up to three 3-cuts
and can be non-hamiltonian if they have six 3-cuts. Whether four or five 3-cuts guarantee
hamiltonicity is unknown for both classes.

Especially looking at numbers of Hamiltonian cycles (e.g. in 4-connected triangulations and
polyhedra) one would expect a difference, as each edge in a 4-connected triangulation lies on
several Hamiltonian cycles and — except for double wheels — in each 4-connected triangulation
one can remove an edge from a triangulation and obtain a 4-connected polyhedron with fewer
Hamiltonian cycles.

Nevertheless computational results show that for small vertex numbers the 4-connected
polyhedra with the smallest number of Hamiltonian cycles have almost as many Hamiltonian
cycles as the 4-connected triangulations with the smallest number of Hamiltonian cycles. And
even more astonishing: for 18, 19 and 20 vertices one even gets the same optimal graphs for
both classes: the double wheels. While for 18 vertices some other polyhedra have only few
Hamiltonian cycles more than the double wheel, for 20 vertices there isn’t even a polyhedron
that comes close to the number of Hamiltonian cycles of the double wheel. So it looks like
for n > 18 the number of Hamiltonian cycles of 4-connected polyhedra is the same value that
was already conjectured for 4-connected triangulations by Hakimi, Schmeichel and Thomassen:
2|V|?> — 12|V| + 16 — the number of Hamiltonian cycles of the double wheel. While for 4-
connected triangulations a linear lower bound for the number of Hamiltonian cycles has been
proven, for 4-connected polyhedra only trivial constant bounds are known, though the real
numbers seem to be the same. ..

Problems:

e Determine for polyhedra and triangulations whether the existence of at most four or five
3-cuts guarantees the existence of Hamiltonian cycles.

e Prove nontrivial lower bounds on the number of Hamiltonian cycles in 4-connected poly-
hedra and maybe also in polyhedra with few 3-cuts.
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For integers j and k£ with 4 < j < 5 and k£ > 1, let ei be the smallest integer [ such that
there is a j-connected plane triangulation GG containing [ prescribed edges of pairwise distance
at least k such that there is no Hamiltonian cycle of G' containing all these [ edges. If ei does
not exist, then we write e}, = oo.
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Obviously, e, < e, and e < e;.

In [F. Goring and J. Harant, Hamiltonian cycles through prescribed edges of at least 4-connected
maximal planar graphs, Discrete Math. 310 (2010) 1491-1494], it is proved that 4 < e < 9
and e} = oo.

Problems:

e [t is open whether €5 and e3 are finite or not.

e What are the exact values e and €3 ?
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In [G. Y. Katona and H. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30
(1999) 205-212] we gave a new definition for Hamiltonian cycles in uniform hypergraphs and
proved a Dirac-type theorem. Since then the theorem was improved and generalized many
different ways. A recent survey is [Y. Zhao, Recent advances on Dirac-type problems for hyper-
graphs, The IMA Volumes in Mathematics and its Applications 159 pp. 145-165]. However,
all of the papers contain only Dirac-type results.

Problem:
Is there an Ore-type theorem?
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The following theorem characterizes edge-colored graphs containing no properly colored cycles.

Theorem (Grossman and Héggkvist, Yeo). Let G be an edge-colored graph containing no
properly colored cycles. Then there is a vertex z € V(G) such that no component of G — z is
joint to z with edges of more than one color.

So there is a sufficient condition for the existence of a properly colored cycle by connectivity
and minimum color degree.

Corollary. Let G be an edge-colored graph. If k(G) > 2 and §°(G) > 2, then G contains a
properly colored cycle.

Problem:

Do there exist functions f(k) and g(k) such that each edge-colored graph G satisfying k(G) >
f(k) and 6°(G) > g(k) contains k vertez-disjoint properly colored cycles?
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For a cycle C' in a plane triangulation, triangles that share exactly ¢ edges with C' are said to
be of Type i (with respect to C'), where i € {0,1,2}. By Whitney’s result, it is known that
every 4-connected plane triangulation contains a Hamiltonian cycle. For possible applications
(e.g. domination number, 2-walks of short length), we would like to find a Hamiltonian cycle
with few triangles of Type 0 (which is equivalent to a Hamiltonian cycle with few triangles of
Type 2). Precisely, I propose the following problem.

Problem:

Find the infimum c such that every 4-connected plane triangulation G contains a Hamiltonian
cycle having at most c|F(G)| triangles of Type 0, where F(G) is the set of faces of G.

It would be also interesting to focus on only the interior of the cycle; i.e. a Hamiltonian cycle
with few interior triangles of Type 0. Furthermore, the same is unknown for the 5-connected
case. Those may have applications.

Note (added after the workshop ended). This problem has been solved by Gunnar Brinkmann
(gunnar.brinkmann@ugent.be), Kenta Ozeki (ozeki@nii.ac.jp), and Nico Van Cleemput
(nicolas.vancleemput@ugent.be). Please contact them for more details.
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Let G be a bridgeless cubic graph. Consider a list of k£ 1-factors of G. Let E; be the set of
edges contained in precisely ¢ members of the k 1-factors. Let ux(G) be the smallest |Ey| over
all lists of k 1-factors of G.

It is known that if G is a cubic graph and p3(G) = 3, then G has girth at most 6. Jaeger
and Swart [Conjecture 1 and 2, in “Combinatorics 79” (eds.: Deza and Rosenberg), Ann. Dis-
crete Math. 9 (1980) 305] conjectured that (1) the girth and (2) the cyclic connectivity of a
snark is at most 6. The first conjecture is disproved by Kochol [Snarks without Small Cycles,
J. Combin. Theory Ser. B 67 (1996) 34-47] and the second is still open. We believe that both
statements of Jaeger and Swart are true for hypohamiltonian snarks.

Conjecture:
Let G be a snark. If G is hypohamiltonian, then ps(G) = 3.
[E. Steffen, 1-Factor and Cycle Covers of Cubic Graphs, J. Graph Theory 78 (2015) 195-206]

Jan Goedgebeur (pers. communication) proved that the Conjecture is true for hypohamil-
tonian snarks with at most 36 vertices.
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Thomassen showed in 1978 that every planar hypohamiltonian graph contains a cubic vertex.
Recently, Gunnar Brinkmann and I (see [arXiv:1606.01693]) showed that planar 3-connected
graphs with at most three 3-cuts are Hamiltonian. By applying this theorem, I proved that
every planar hypohamiltonian graph contains at least four cubic vertices. We know that there
exists a planar hypohamiltonian graph (of order 40) containing 30 cubic vertices. No planar
hypohamiltonian graph with fewer cubic vertices is known.

Problem:

Prove that planar hypohamiltonian graphs contain more than four cubic vertices, or find a
planar hypohamiltonian graph with fewer than 30 cubic vertices.



