Visualizing Cauchy's Interlacing Property for Line Distance Matrices

Gašper Jaklič ${ }^{*}$ Tomaž Pisanski ${ }^{\dagger}$ Milan Randić ${ }^{\ddagger}$

November 3, 2005

Let $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right), 0<t_{1}<t_{2}<\cdots<t_{n}, t_{i} \in \mathbb{R}$, be a given vector. A line distance matrix $A \in \mathbb{R}^{n \times n}$ is defined as

$$
(A)_{i j}= \begin{cases}t_{i}-t_{j}, & j \leq i, \\ t_{j}-t_{i}, & i<j .\end{cases}
$$

Line distance matrices frequently appear in graph theory and in bioinformatics. Consider a DNA sequence (of four nucleotide A,T,G,C) and represent distances between occurrences of G. For example, the first exon of human b-globin gene starts as: ATGGTGCACCTGACTCCTGAG... Positions of G in the sequence can be written in a vector $\boldsymbol{t}=(3,4,6,12,19,21)$ and its corresponding line distance matrix is

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 3 & 9 & 16 & 18 \tag{1}\\
1 & 0 & 2 & 8 & 15 & 17 \\
3 & 2 & 0 & 6 & 13 & 15 \\
9 & 8 & 6 & 0 & 7 & 9 \\
16 & 15 & 13 & 7 & 0 & 2 \\
18 & 17 & 15 & 9 & 2 & 0
\end{array}\right)
$$

In the paper the distribution of the eigenvalues of line distance matrices is studied. It is shown that line distance matrices of size n have one positive and $n-1$ negative eigenvalues. Visual representation of Cauchy's interlacing property for line distance matrices is considered.

[^0]

Figure 1: Cauchy's interlacing property for line distance matrix (1).

[^0]: *Institute of mathematics, physics and mechanics, University of Ljubljana
 ${ }^{\dagger}$ Institute of mathematics, physics and mechanics, University of Ljubljana and University of Primorska
 \ddagger Drake University

