

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria

Matteo Baldoni

Fachbereich Chemie, Technische Universität Dresden, Germany Department of Chemistry and ISTM-CNR, University of Perugia, Italy mbaldoni@chemie.tu-dresden.de

Carbon Nanostructures (CNSs)

1D

Graphene Quantum Dots (GQDs)

Graphene Nanoribbons (GNRs)

Graphene

Finite length Carbon Nanotubes (FLCNTs)

Carbon Nanotubes (CNTs)

- Fullerenes
- Nano Onions
- Nano Cones
- Nano Horns
- etc...

Low-dimensional carbon nanostructures

• Curvature/chirality

Real materials: *terminations* (non-infinite)

CLAR SEXTET THEORY

Clar VB model of the extra stability of $6n \pi$ -electron benzenoid species (PAH)

Conventional two-electrons πbonds (lines)
Aromatic-sextets (six-electrons π-cycles) represented by circles

Clar's rule:

2

The most important Kekulè resonance structure is that with the largest number of disjoint aromatic-sextets Clar structures with only aromatic-sextets is *fully-benzenoid* The number of Clar representations depends on the particular PAH considered Confirmed by theory and experiments.

Clar structure

APPLICATION OF CLAR SEXTET THEORY TO THE CASE OF CNSs

Conventional (*i,j*) basis vectors:

- 2 Carbon atoms
- Hexagonal pattern

Clar basis vectors:

- Aromatic sextet (6 carbon atoms)
- Triangular pattern
- Experimentally observed (STM)

APPLICATION OF CLAR SEXTET THEORY TO THE CASE OF CNSs

Relationship between *i*,*j* and Clar vector indexes

$$r = \frac{n-m}{3} \qquad s = \frac{n+2m}{3}$$

r, s integers

CNSs (n,m) fully benzenoid (mod(n-m,3)=0

Clar resonance hybrids for infinite length graphene (2D)

• Three equivalent Clar representation

- Each resonance
 hybrid has the same
 number of Clar aromatic
 sextet
- All C-C bond lengths are equivalent

Clar resonance hybrids for graphene nanoribbons (1D)

1D confinement
Unique best Clar representation (fully benzenoid)
Less aromatic sextets in the other two Clar resonance hybrids

Kekulé
Best Clar
representation is
not unique

Electronic properties of GNRs: edge effects and Clar's sextet theory

ZIG-ZAG

CHIRAL

ARMCHAIR

M. Baldoni, A. Sgamellotti and F. Mercuri, Chem. Phys. Lett., 2008, 464, 202

Transmission spectra

Simulation of an electronic device at atomistic level (nm scale)
Non-equilibrium Green Functions (NEGFs) formalism

- SIESTA 2 0 program packago (TPANSIESTA)
- SIESTA 3.0 program package (TRANSIESTA)

Transmission spectra for zigzag terminated GNRs of different width

Transmission spectra for armchair terminated GNRs of different width

- Different best Clar representation vs. GNRs width
- Different conducting behavior
- Strongly quantized in unit of 2e²/h

Clar resonance hybrids for armchair graphene quantum dots (0D)

91 aromatic sextets

75 aromatic sextets

75 aromatic sextets

• No PBC

• Essentially large PAHs

• Best Clar representation (fully benzenoid) strongly stabilized

Bonds length analysis for armchair terminated GQD (0D)

DFT (B3LYP/3-21g) optimized structure
Average C-C bond length analysis of each hexagon
MO calculations strictly correlated with the VB pattern

Electronic properties of armchair terminated graphene nanostructures through Clar's sextet theory

номо

Frontier orbitals morphology as superimposition of benzenoid units

Clar resonance hybrids for zigzag terminated GQD (0D)

• MO calculations correlated with the VB resonance hybrid of the most important Clar representations

Clar resonance hybrids for zigzag terminated GQD (0D)

Electronic properties of graphene nanostructures through Clar's sextet theory

Zigzag-terminated NGs

Non-trivial best-Clar representation \Rightarrow The topology of the MOs differs from a simple superposition of benzenoid rings

APPLICATION OF CLAR SEXTET THEORY TO THE CASE OF CNTs

Ormsby, J.; King, B. The Journal of Organic Chemistry 2004, 69,4287–4291.

Clar unit cells

Clar sextet theory:

 \Rightarrow definition of *unit cells* based on Clar theory \Rightarrow *network of benzenoid units* (connected by single and/or double bonds)

• Common representation of *all* CNSs (CNTs, graphenes, etc.)

• Chemically "simple" building blocks

Representation of a carbon nanostructure ⇒ replication of Clar unit cells

FLCC approach: Models

Computational Details

FLCCs (2-6 Clar cells)
Geometry Optimization
B3LYP
3-21G
Gaussian 03

FLCC approach: Models

Canonical Clar

Used in calculations

Electronic properties of FLCC models of CNTs

Results from literature

The use of finite-length cluster models, when applied through purely size-based criteria, provide **contrasting results** and **slow convergence**.

Electronic properties of CNTs and Clar's sextet theory

Electronic properties of finite-length models of (7,0) CNTs

Non-Clar cluster/edges ("crystallographic" (*i,j*) basis):

• Localized orbitals in the MO description

• High-spin ground states

FLCCs:

- Singlet ground state
- Delocalized frontier MO
- 1:1 correlation of MOs with the PBC description

Electronic properties of CNTs and Clar's sextet theory

(9,0) PBC B3LYP (9,0) CLAR B3LYP

The reactivity of semiconducting chiral CNTs : F chemisorption

M. Baldoni, D. Selli, A. Sgamellotti and F. Mercuri, 2009, 113, 862

The reactivity of semiconducting chiral CNTs: CH₂ chemisorption

M. Baldoni, D. Selli, A. Sgamellotti and F. Mercuri, J. Phyc. Chem. C. 2009, 113, 862

Conclusions

- Unified description of the electronic properties of lowdimensional carbon nanostructures
- "Well-behaved" electronic properties (edge effects);
- Fast and monotonic convergence of electronic properties (frontier orbital energies, reaction energies, etc.);
- Bridge between the VB representation and the local electronic structure of the hexagonal network in terms of resonance hybrids and MO calculations ⇒ better understanding of the electronic situation ("chemical" interpretation of results);
- Computationally cheap & good accuracy (higher accuracy with lower computational cost vs. periodic or other finite-length models).

Acknowledgements

- Daniele Selli (University of Perugia)
- Prof. Antonio Sgamellotti (University of Perugia)
- Prof. Gotthard Seifert (Technische Universitaet, Dresden)
- Dr. Francesco Mercuri (ISTM-CNR and University of Perugia)