Computational Results on the α -Deficit of Trees

Gunnar Brinkmann, Hadrien Mélot and Eckhard Steffen

> Gunnar.Brinkmann@UGent.be Hadrien.Melot@umons.ac.be es@uni-paderborn.de

Bipartite labeling of a tree:

Given a tree with bipartition classes A and B.

Label the vertices in A with $1, \ldots, |A|$ and the vertices in B with $|A| + 1, \ldots, |A| + |B|$.

All possible edge labels $1, \ldots, 8$ are present:

GENT

Definition:

The α -deficit of a tree with n vertices is the minimum over both ways to choose the classes A,B and all bipartite labelings $l()$ of the number of those edge labels in $1, \ldots, n-1$ that are not induced by $l()$.

but label "2" missing Two times label "5"

Not very exciting: some trees have deficit 0, others positive deficit and even with maximum degree 3 soon deficitary trees occur. . .

Also trees with α -deficit larger than 1 occur:

GENT

But sometimes you need more points to make a good picture. . .

Maybe we need α -deficits for a lot of trees to see some structure. . .

The algorithm to compute the α -deficit

a standard branch and bound algorithm

• try to restrict the labeling in a way that doesn't change the deficit

- label in a way so that especially on low levels the recursion tree has few branches
- take care of symmetry

• try to restrict the labeling in a way that doesn't change the deficit

Fix an arbitrary of the two classes as A .

If the vertices in class A have original identifiers $a_1 < a_2 < \ldots < a_{|A|}$ one can restrict the search to labelings $l()$ with $l^{-1}(1) < l^{-1}(|A|).$

Folklore: the deficit doesn't change under these

restrictions

• label in a way that especially on low levels the backtrack tree has few branches

recursion over edge labels

- $n-1$: 1 possibility: vertex labels $(1, |V|)$
	- 1: 1 possibility: $(|A|, |A| + 1)$
- $n-2$: 2 possibilities: $(1, |V| 1)$, $(2, |V|)$
	- 2: 2 possibilities: $(|A|, |A| + 2)$, $(|A| 1, |A| + 1)$

. . .

• take care of symmetry (with nauty)

UNIVERSI

But: computing the symmetry for a huge number of partially labelled graphs is expensive. . .

- check whether trivial orbit was labelled
- switch to simpler computation as soon as only leafs are interchanged

We computed the α -deficit of more than 45.000.000.000 graphs. . .

. . . and these are the results:

Maximum degree 3

Maximum degree 3

- The α -deficit seems to be at most 1.
- While for $|V| \leq 12$ no regularity in the vertex numbers allowing deficitary graphs can be seen, for $|V| > 12$ it seems as if deficitary graphs can only appear for $|V| = 7 + k * 8$ with $k \in \mathbb{N}$.

Let's look at the deficitary graphs:

 $|V|=31$ $|V|=31$ $|V|=31$

Maximum degree 4

UNI

 Δ | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 $\alpha_{\text{def}} = 1 \mid 275 \mid 142 \mid 80 \mid 35 \mid 18 \mid 7 \mid 3 \mid 1$ $\alpha_{\sf def} = 2 \begin{array}{c|c|c|c|c} 7 & 6 & 4 & 2 & 1 \end{array}$

18 vertices

19 vertices

GENT

20 vertices

21 vertices

22 vertices

Faculty of Science

Lim Scot

24 vertices

25 vertices

The unique deficitary tree with $\Delta = |V| - 4$:

All the trees in the constant series are of the form

smallest graphs in the series plus a fan.

But adding a fan sometimes increases and sometimes decreases the deficit. Why not here ?

Smallest graphs with $\alpha - deficit = k$

known: they have deficit k

So lots of things to prove. . .

