$\frac{\text{Computational Results on the}}{\underline{\alpha}\text{-}\text{Deficit of Trees}}$

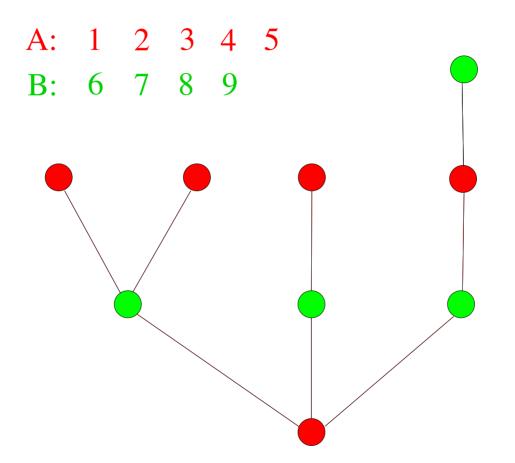
Gunnar Brinkmann, Hadrien Mélot and Eckhard Steffen

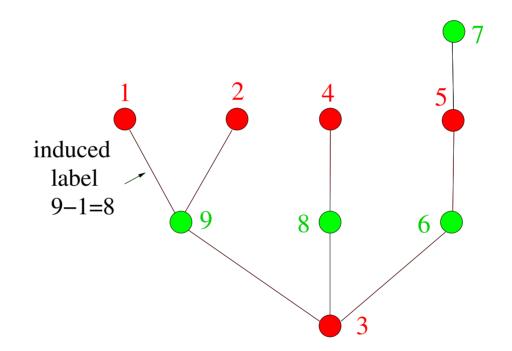
> Gunnar.Brinkmann@UGent.be Hadrien.Melot@umons.ac.be es@uni-paderborn.de

Bipartite labeling of a tree:

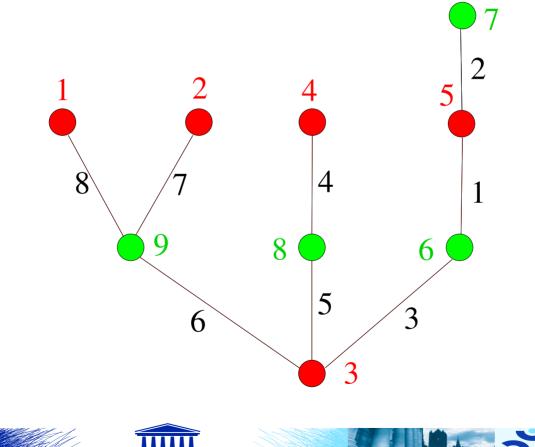
Given a tree with bipartition classes A and B.

Label the vertices in A with $1, \ldots, |A|$ and the vertices in B with $|A| + 1, \ldots, |A| + |B|$.





All possible edge labels $1, \ldots, 8$ are present:



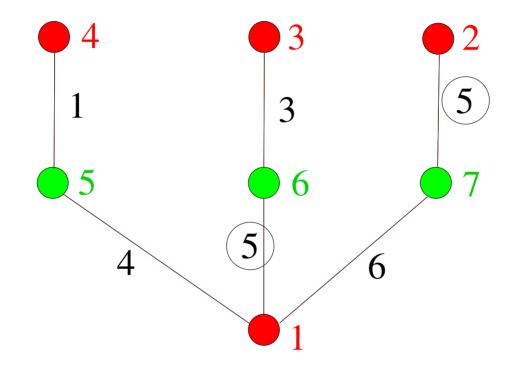
IVERSITEIT GENT

Definition:

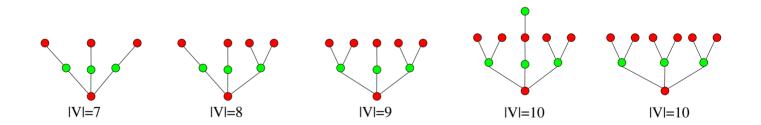
The α -deficit of a tree with n vertices is the minimum over both ways to choose the classes A,B and all bipartite labelings l() of the number of those edge labels in $1, \ldots, n-1$ that are not induced by l().

Two times label "5" but label "2" missing

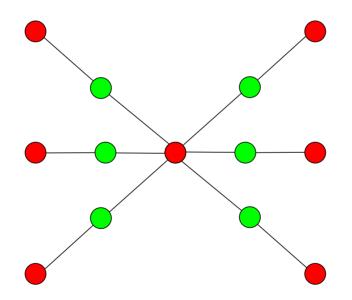
GENT



Not very exciting: some trees have deficit 0, others positive deficit and even with maximum degree 3 soon deficitary trees occur...



Also trees with α -deficit larger than 1 occur:



But sometimes you need more points to make a good picture...

Maybe we need α -deficits for a lot of trees to see some structure. . .

The algorithm to compute the α -deficit

a standard branch and bound algorithm

- try to restrict the labeling in a way that doesn't change the deficit
- label in a way so that especially on low levels the recursion tree has few branches
- take care of symmetry

 try to restrict the labeling in a way that doesn't change the deficit

Fix an arbitrary of the two classes as A.

If the vertices in class A have original identifiers $a_1 < a_2 < \ldots < a_{|A|}$ one can restrict the search to labelings l() with $l^{-1}(1) < l^{-1}(|A|)$.

Folklore: the deficit doesn't change under these

restrictions

 label in a way that especially on low levels the backtrack tree has few branches

recursion over edge labels

- n-1: 1 possibility: vertex labels (1, |V|)
 - 1: 1 possibility: (|A|, |A| + 1)
- n-2: 2 possibilities: (1,|V|-1),(2,|V|)
 - 2: 2 possibilities: (|A|, |A| + 2), (|A| 1, |A| + 1)

. . .

• take care of symmetry (with nauty)



But: computing the symmetry for a huge number of partially labelled graphs is expensive...

- check whether trivial orbit was labelled
- switch to simpler computation as soon as only leafs are interchanged

We computed the α -deficit of more than 45.000.000.000 graphs...

... and these are the results:

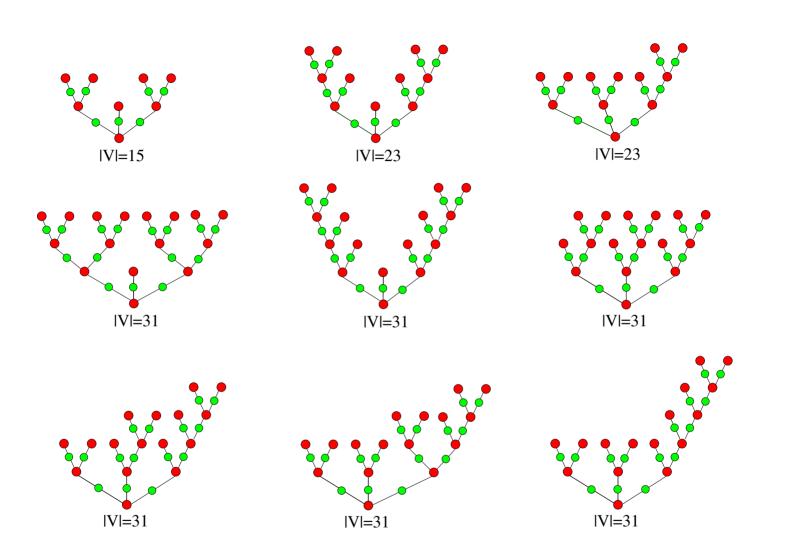
Maximum degree 3

V									16	
def. 1	1	$1 \mid 1$	2	0	1	0	0	1	0	0
def. 2	0	0 0	0	0	0	0	0	0	0	0
	'									
	18						24			
def. 1 def. 2	0	0	0	0	0	2	0	0	0	0
def. 2	0	0	0	0	0	0	0	0	0	0
V def. 1 def. 2	28 0 0	29 0 0		31	32	33	34	35	36	

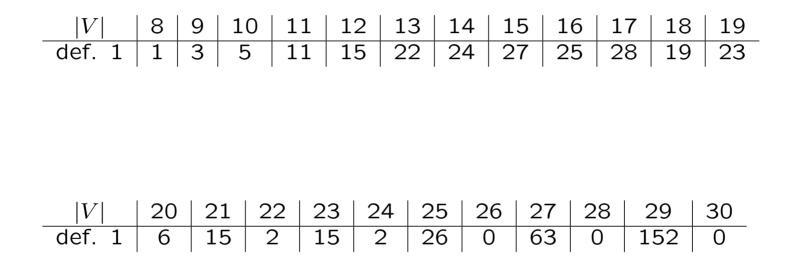
Maximum degree 3

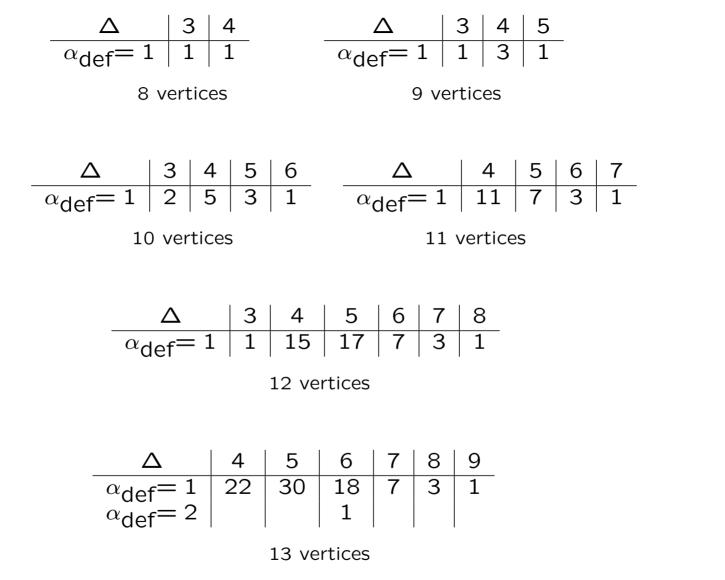
- The α -deficit seems to be at most 1.
- While for $|V| \le 12$ no regularity in the vertex numbers allowing deficitary graphs can be seen, for |V| > 12 it seems as if deficitary graphs can only appear for |V| = 7 + k * 8 with $k \in \mathbb{N}$.

Let's look at the deficitary graphs:



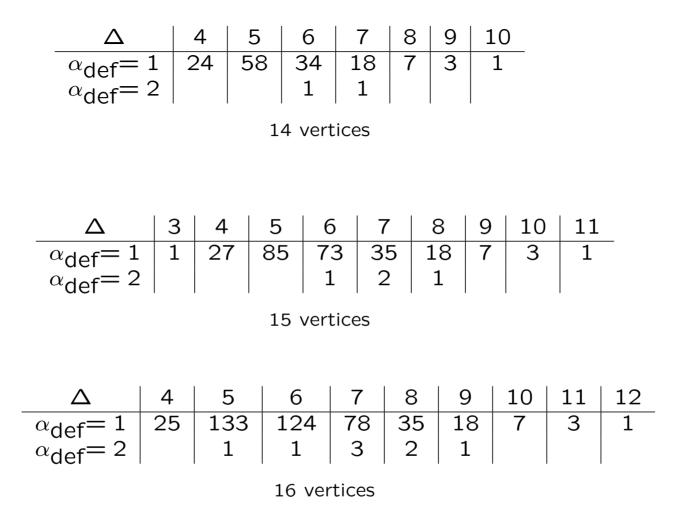
Maximum degree 4





UNIV

GENI



Δ	6	7	8		10	11	12	13		
$\alpha_{def} = 1$ $\alpha_{def} = 2$	232	140	79	35	18	7	3	1		
$\alpha_{def} = 2$	2	4	4	2	1					
17 vertices										

Δ	7	8	9	10	11	12	13	14			
$\alpha_{def} = 1$ $\alpha_{def} = 2$	275 7	142 6	80 4	35 2	18 1	7	3	1			
18 vertices											

Δ	8	9	10	11	12	13	14	15
$\alpha_{def} = 1$	284		80	35	18	7	3	1
$\alpha_{def} = 2$	13	6	4	2	1			
$\alpha_{def} = 3$		1						

19 vertices

Δ		10						16
$\alpha_{def} = 1$	291	144	80	35	18	7	3	1
$\alpha_{def} = 2$	14	6	4	2	1			
$\alpha_{def} = 3$	1	1						

20 vertices

Δ	10	11	12	13	14	15	16	17
$\alpha_{def} = 1$	291	144	80	35	18	7	3	1
$\alpha_{def} = 2$	14	6	4	2	1			
$\alpha_{def} = 3$								

21 vertices

Δ	11	12	13	14	15	16	17	18
$\alpha_{def} = 1$	292	144	80	35	18	7	3	1
$\alpha_{def} = 2$	14	6	4	2	1			
$\alpha_{def} = 3$								

22 vertices

Δ	10	11	12	13	14	15	16	17	18	19
$\alpha_{def} = 1$	1010	542	292	144	80	35	18	7	3	1
$\alpha_{def} = 2$	49	26	14	6	4		1			
$\alpha_{def} = 3$	3	3	2	1						
23 vertices										

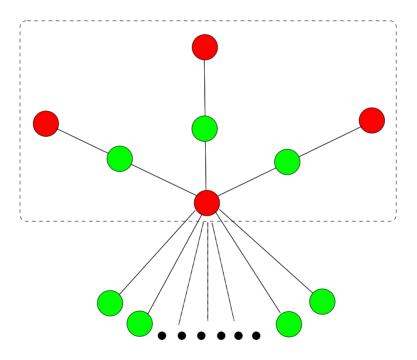
	11									
$\alpha_{def} = 1$	1020	544	293	144	80	35	18	7	3	1
$\alpha_{def} = 2$	49	26	14	6	4	2	1			
$\alpha_{def} = 3$	5	3	2	1						

24 vertices

	12								
$\alpha_{def} = 1$								3	1
$\alpha_{def} = 2$	49	26	14	6	4	2	1		
$\alpha_{def} = 3$	5	3	2	1					

25 vertices

The unique deficitary tree with $\Delta = |V| - 4$:



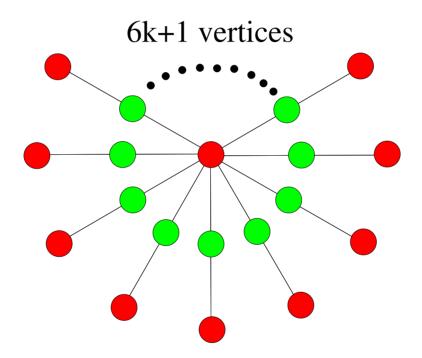
All the trees in the constant series are of the form

smallest graphs in the series plus a fan.

But adding a fan sometimes increases and sometimes decreases the deficit. Why not here ?

UN

Smallest graphs with $\alpha - deficit = k$



known: they have deficit k

So lots of things to prove...

