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Why are foams interesting (to non-aphrologists) ?

Many applications of industrial and
domestic importance:

* Oil recovery

) FIFE-fIghtlng

» Ore separation

* (Industrial) cleaning ‘

 Food products

Highly concentrated emulsions are similar to foams.
Many solid foams are made from I|qU|d precursors
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Foam Structure * An equilibrium dry foam minimizes
Its surface area at constant volume.

- * e \\\w
7 S ’@m@f » As a consequence (Plateau, Taylor) it

T e B Is a complex fluid with special local
geometry...

* Films meet three-fold at 120° angles
In lines (Plateau borders), and the
lines meet tetrahedrally.

Nl
'
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 Laplace Law: film curvatures
balanced by pressure differences, so

each film has constant mean
curvature.
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Foam Structure in 2D (e.g. squeezed between glass plates)

« Adry 2D foam at equilibrium minimizes
perimeter and Is 3-connected at 120° angles.

e Each film is a circular arc.
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Motivations for studying foam structure

« Mathematics: Each soap film is a minimal surface;
provide solutions of i1soperimetric problems.

* Physics: Dynamics of foams is largely dictated by the

local static structure
(e.q. stability, foamability, flow (rheology))

* Biology: “Bubbles” are a model for many cellular
structures

(e.g. drosophila eye, sea urchin skeleton, ...)
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Least perimeter problems in foams

« What Is the least perimeter division of the plane into equal area

cells? Hexagonal honeycomb (Hales). 1

« 3D equivalent (Kelvin problem) unproven.

 Finite case: what is the arrangement of N cells of equal
area/volume that minimizes the total perimeter/surface area?

« What effect does the shape of the boundary have?
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There are very many possibilities for each N, the perimeters
vary only within a few percent, ...

P

N=9

... and there appear to be few “patterns”.
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Finite clusters with free boundary

Proofs for N=1,2,3:

Isoperimetric problem Morgan et al Wichiramala

For larger N, instead of a proof, try many
possibilities by “shuffling” clusters of N
bubbles and choosing the best.

Cox et al. (2003) Phll Mag. 83:1393- 1406
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Simulating foam structure

Ken Brakke’s Surface Evolver:
“The Surface Evolver 1s software
expressly designed for the
modeling of soap bubbles, foams,
and other liquid surfaces shaped by
minimizing energy subject to
various constraints ...”
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Colour scheme

 Colour bubbles according to number of sides (“charge”, q):
bulk bubbles should be hexagonal: g=6-n;
peripheral bubbles should be pentagonal: g=5-n.

» Total charge Is 6 — how Is it distributed?

Cox et al. (2003) Phil. Mag. 83:1393-1406
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Finite clusters with free boundary

Never more than one
negative (yellow)

defect for N>5.

Positive defects 17921 20.200 o 24.569
mostly confined to

the periphery:.

Magic ""hexagonal™
numbers.

Cox et al. (2003) Phil. Mag.
83:1393-1406
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Finite clusters with free boundary

Never more than one
negative (yellow)
defect for N>5.

Positive defects
mostly confined to
the periphery.

Magic ""hexagonal™
numbers.

Cox et al. (2003) Phil. Mag.
83:1393-1406
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Finite clusters with free boundary

Never more than one
negative (yellow)
defect for N>5.

Positive defects
mostly confined to
the periphery.

Magic ""hexagonal™
numbers.

Cox et al. (2003) Phil. Mag.
83:1393-1406
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Effect of boundary shape at large N

Honeycomb structure in bulk: what shape should surface take?

Cox & Graner, Phil. Mag. (2003)
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Effect of boundary shape at large N
Try three different arrangements for each N:
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(a) Circular cluster: The bubble whose centre is farthest from the centre of the cluster
IS eliminated.

(b) Spiral Hexagonal cluster: the outer shell is eroded sequentially in an anticlockwise
manner starting from the lowest corner

(c) Corner hexagonal cluster: the corners of the outer shell are first removed and the
erosion proceeds from all of the six corners.
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Effect of boundary shape at large N
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Number of bubbles N

A circular cluster appears to get worse as N increases

The circular cluster has lower perimeter in 20 out of 10,000 cases
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Potential correspondence?

Each bubble has a well-defined centre
(e.g. average of vertex positions)

Could there be a correspondence between the position of particles
that minimize an inter-particle potential and the centres of the
bubbles?

e.g. Quadratic confining potential, Coulomb potential, conjugate
gradient and VVoronoi construction, then Surface Evolver:

Different potentials find optimal candidates for different N, some better than the
undirected “shuffling”, but no single potential finds all.
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Towards a proof ... graph enumeration?

Each edge of the cluster defines a link between centres ...
so construct the dual graph:

Could we enumerate all possible convex planar graphs with N
vertices, with conditions on the degree
of internal and peripheral vertices?
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Confined clusters

Confine the foam within a fixed boundary and search for the
least perimeter arrangement of bubbles.

e.g. equilateral triangle:

P =44185 P =4.4285 P =4.5000

Ben Shuttleworth, MMath 2008
proof by enumeration of connected candidates

Intuition not always the best guide: use potential search procedure ...
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Confined clusters

Having found an optimal candidate for the free case, for which
fixed boundary shapes does it remain optimal?
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Confined clusters

Change confining potential to create different initial conditions
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Clusters confined to the surface of a unit sphere

Which configuration of equal area cells realizes the least perimeter?

Retain 120° angles, but edges not arcs for N=11, N >12.

Proofs for N up to 4, and N=12.
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Clusters confined to the surface of a unit sphere

Random shuffling procedure gives good results for N<20.

For example:
N=11 is lowest to have a hex face N=13 is highest to have a quad face
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Clusters confined to
the surface of a unit
sphere

Il
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26050 DO

For 14<N<20 find
that optimal
candidate consists
only of pentagons
and hexagons.

—
o

cf. fullerenes

For N>20 enumerate < g )
all tilings with 12 '
pentagons and N-12
hexagons using Cage.
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Clusters confined to the surface of a unit sphere

= Conjecture that for N> 13 need to find the most widely-spaced
arrangement of pentagons

o Foam
Minimal Fullerene

—
)
@
=
-
o
o
8
o
'_

Number of
pentagon-pentagon adjacencies

30 35
Number of bubbles, N

Cox & Flikkema, Elec. J. Combinatorics 17:R45 (2010
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Open questions

 Does the least perimeter arrangement of bubbles confined by an
equilateral triangular boundary follow the same pattern indefinitely?

* Is it possible to enumerate all candidates for each N to the optimal
free/confined cluster in 2D?

« How should pentagons be arranged‘) the surface of a sphere to
minimize perimeter?

« What is the optimal arrangement of N arMinimizing bubbles in 3D?
(Free? Confined within a sphere? Or a cylinder?)

« What is the largest number of bubbles of unit volume that can be
packed around one other? (Kissing conjecture: 12 in 2D, 32 in 3D.)
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Kissing problem for bubbles
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