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I. 8 infinite families of

({a, b}, k)-spheres



General

Non-hyperbolic (R , k)-spheres

Given R ⊂ N, an (R, k)-sphere S is a k-regular map on the
sphere whose faces have gonalities (numbers of sides) i ∈ R.

Let v , e and f =
∑

i pi be the numbers of vertices, edges and
faces of S , where pi is the number of i-gonal faces.
Clearly, k-regularity implies kv = 2e =

∑
i ipi and

Euler formula 2 = v − e + f =2e
k − e + f = 2−k

k e +
∑

i pi =∑
i pi

(
i(2−k)

2k + 1
)

become 4k =
∑

i pi (2k − i(k − 2)).

Let us see 2k − i(k − 2) as the curvature of i-gonal faces and
Euler formula as equality of the total curvature to 4k.

We consider only non-hyperbolic maps, i.e. 1
k + 1

m ≥ 1
2 for

m=max{i ∈ R}. So, m ≤ 2k
k−2 and the family of (R, k)-maps

can be infinite only for m= 2k
k−2 when pm is not restricted.

Then, clearly, all possible (m, k) are (6, 3), (4, 4), (3, 6).
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General

8 families of ({a, b}, k)-spheres

An ({a, b}, k)-sphere is an (R, k)-sphere with R = {a, b},
1 ≤ a < b. It has v= 1

k (apa + bpb) vertices.

We have b = 2k
k−2 ; so, (b, k)= (6, 3), (4, 4), (3, 6)

and Euler formula become

12 =
∑

i (6− i)pi if k = 3
8 =

∑
i (4− i)pi if k = 4

6 =
∑

i (3− i)pi if k = 6

Further, pa = 2b
b−a and all possible (a, pa) are:

(5, 12), (4, 6), (3, 4), (2, 3) for (b, k)=(6, 3);
(3, 8), (2, 4) for (b, k)=(4, 4);
(2, 6), (1, 3) for (b, k)=(3, 6).



General

8 families of ({a, b}, k)-spheres

Those 8 families can be seen as spheric analogs of the regular
plane partitions {63}, {44}, {36} with pa a-gonal ”defects”,
disclinations added to get the curvature of the sphere S2.

({5, 6}, 3)-spheres are (geometric) fullerenes, of great practical
interest. {5, 6}60 is a new form C60 of a carbon allotrope.

({a, b}, 4)-spheres are minimal projections of alternating links,
whose components are their central circuits (those going only
ahead) and crossings are the verices.

Let us denote ({a, b}, k)-sphere with v vertices by {a, b}v .

By smallest member Dodecahedron {5, 6}20, Cube {4, 6}8,
Tetrahedron {3, 6}4, Octahedron {3, 4}6 and 3×K2 {2, 6}2,
4×K2 {2, 4}2, 6×K2 {2, 3}2, Trifolium {1, 3}1, we call eight
families: dodecahedrites, cubites, tetrahedrites, octahedrites
and 3-bundelites, 4-bundelites, 6-bundelites, trifoliumites.
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General

8 families: existence criterions

Grűnbaum-Motzkin, 1963: criterion for k=3 ≤ a; Grűnbaum, 1967:
for ({3, 4}, 4)-spheres; Grűnbaum-Zaks, 1974: for other cases.

k (a, b) smallest one it exists if and only if pa v

3 (5, 6) Dodecahedron p6 6= 1 12 20 + 2p6

3 (4, 6) Cube p6 6= 1 6 8 + 2p6

4 (3, 4) Octahedron p4 6= 1 8 6 + p4

6 (2, 3) 6× K2 p3 is even 6 2 + p3

2

3 (3, 6) Tetrahedron p6 is even 4 4 + 2p6

4 (2, 4) 4× K2 p4 is even 4 2 + p4

3 (2, 6) 3× K2 p6=(k2 + kl + l2)− 1 3 2 + 2p6

6 (1, 3) Trifolium p3=2(k2 + kl + l2)− 1 3 1+p3

2

({3, 6}, 3)- (Grűnbaum-Motzkin, 1963) and ({2, 4}, 4)-spheres
(Deza-Shtogrin, 2003) admit a simple 2-parametric description.
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General

Generation of ({a, b}, k)-spheres

({2, 3}, 6)-spheres, except 2× K2 and 2× K3, are the duals of
({3, 4, 5, 6}, 3)-spheres with six new vertices put on edge(s).
Exp: ({5, 6}, 3)-spheres with 5-gons organized in six pairs.

({1, 3}, 6)-spheres, except {1, 3}1 and {1, 3}3, are as above
but with 3 edges changed into 2-gons enclosing one 1-gon.

({2, 6}, 3)-spheres are given by the Goldberg-Coxeter
construction from Bundle3 = 3× K2 {2, 6}2.

({1, 3}, 6)-spheres come by the Goldberg-Coxeter construction
(extended below on 6-regular spheres) from Trifolium {1, 3}1.
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General

Digression on Rose of Three Petals

The polar equation of the rose (or rhondonea) is r=a cos nθ.
Its case n = 3, Trifolium {1, 3}1, is a quartic plane curve,
i.e. a plane algebraic curve of degree 4, r=cos 3θ in polar,
or (using cos 3θ=4 cos3 θ-3 cos θ) (x2+y2)2=x(x2-3y2) in
rectangular coordinates.



General

Computer generation of the families

Main technique: exhaustive search. Sometimes, speedup by proving
that a group of faces cannot be completed to the desired graph.

The program CPF by Brinkmann-Delgado-Dress-Harmuth,
1997 generates 3-regular plane graphs with specified p-vector.

ENU by Brinkmann-Harmuth-Heidemeier, 2003 and
Heidemeier, 1998 does the same for 4-regular plane graphs.
Dutour adapted ENU to deal with 2-gonal faces also.

CGF by Harmuth generates 3-regular orientable maps with
specified genus and p-vector.

Plantri by Brinkmann-McKay deals with general graphs.

The package CaGe by Brinkmann-Delgado-Dress-Harmuth,
1997 is used for plane graph drawings.

The package PlanGraph by Dutour, 2002 is used for handling
planar graphs in general.



General

II. Polyhedrality of

({a, b}, k)-spheres



General

Polyhedra and planar graphs

A graph is called k-connected if after removing any set of
k − 1 vertices it remains connected.

The skeleton of a polytope P is the graph G (P) formed by its
vertices, with two vertices adjacent if they generate a face.

Steinitz Theorem: a graph is the skeleton of a polyhedron
(3-polytope) if and only if it is planar and 3-connected.

A polyhedron is usually represented by the Schlegel diagram
of its skeleton, the program used for this is CaGe.

The dual graph G ∗ of a plane graph G is the plane graph
formed by the faces of G , with two faces adjacent if they
share an edge. The skeletons of dual polyhedra are dual.
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General

3-connectedness of ({a, b}, 3)-spheres

Any ({a, b}, k)-sphere is 2-connected. But some infinite series
of ({1, 2, 3}, 6)-spheres with (p1, p2)=(2, 2) are not.

Any ({a, 6}, 3)-sphere is 3-connected if a = 4, 5 and not if
a = 2 (one can delete two vertices adjacent to a 2-gon).

Except the following series, ({3, 6}, 3)-spheres (moreover, all
({3, 4, 5, 6}, 3)-spheres) are 3-connected.



General

3-connectedness of ({a, b}, 6)- and ({a, b}, 4)-spheres

Any ({a, b}, 6)-sphere is 3-connected, except ({2, 3}, 6)- ones
which are duals of only 2-connected ({3, 6}, 3)-spheres, with
six vertices of degree 2 added on edges.

Any ({a, b}, 4)-sphere is 3-connected, except the following
series of ({2, 4}, 4)-spheres.

REMARK. {2, 4}v (D2d ,D2h) are k-inflations of above. D4,D4h are
GCk,l(4×K2). Remaining D2: 2 complex or 3 natural parameters.



General

Hamiltonicity of ({a, b}, k)-spheres

Grűnbaum-Zaks, 1974: all ({1, 3}, 6)- and ({2, 4}, 4)-spheres
are Hamiltonian, but ({2, 6}, 3)- with v ≡ 0 (mod 4) are not

Goodey, 1977: ({3, 6}, 3)- and ({4, 6}, 3)- are Hamiltonian.

Conjecture: an Hamiltonian circuit exists in all other cases.

To check hamiltonicity of a ({a, b}, k)-map on the projective plane
P2, the following theorem (Thomas-Yu, 1994) could help:
every 4-connected graph on P2 has a contractible (i.e. being a
boundary of 2-cell) Hamiltonian circuit.
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III. 8 families:

4 smallest members



General

First four ({2, 4}, 4)- and ({3, 4}, 4)-spheres

D4h 22
1 (22) D4h 42

1 (42) D2h 2×22
1 (22, 4) D2d 62

2 (62)

Oh 63
2 (43)

Borr. rings D4d 818 (16) D3h 940 (18)
D2 102

56

(6; 14)

Above links/knots are given in Rolfsen, 1976 and 1990 notation.



General

First four ({2, 3}, 6)- and ({1, 3}, 6)-spheres

D6h (23) D3h (3; 6) D2d (22; 8) Td (34)

C3v (3) C3h (3; 6) C3v (62) C3 (21)

Grűnbaum-Zaks, 1974: {1, 3}v exists iff v = k2 + kl + l2 for
integers 0 ≤ l ≤ k. We show that the number of {1, 3}v ’s is the
number of such representations of v , i.e. found GCk,l({1, 3}1).



General

First four ({2, 6}, 3)- and ({3, 6}, 3)-spheres

Number of ({2, 6}v ’s is nr. of representations v=2(k2 + kl + l2),
0 ≤ l ≤ k (GCk,l({2, 6}2)). It become 2 for v=72=52+15+32.

D3h (6) D3h (63) D3h (122) D3 (42)

Td (43) D2h (82, 42) Td (123) Td (86)



General

First four ({4, 6}, 3)- and ({5, 6}, 3)-spheres

Oh (64) D6h (182) D3h (62; 30) D2d (242)

Ih (106) D6d (12; 60) D3h (123; 42) Td (127)



General

IV. Symmetry groups of

({a, b}, k)-spheres



General

Finite isometry groups

All finite groups of isometries of 3-space E3 are classified.
In Schoenflies notations, they are:

C1 is the trivial group

Cs is the group generated by a plane reflexion

Ci = {I3,−I3} is the inversion group

Cm is the group generated by a rotation of order m of axis ∆

Cmv (' dihedral group) is the group generated by Cm and m
reflexion containing ∆

Cmh = Cm × Cs is the group generated by Cm and the
symmetry by the plane orthogonal to ∆

S2m is the group of order 2m generated by an antirotation, i.e.
commuting composition of a rotation and a plane symmetry



General

Finite isometry groups Dm, Dmh, Dmd

Dm (' dihedral group) is the group generated of Cm and m
rotations of order 2 with axis orthogonal to ∆

Dmh is the group generated by Dm and a plane symmetry
orthogonal to ∆

Dmd is the group generated by Dm and m symmetry planes
containing ∆ and which does not contain axis of order 2

D2h D2d



General

Remaining 7 finite isometry groups

Ih = H3 is the group of isometries of Dodecahedron;
Ih ' Alt5 × C2

I ' Alt5 is the group of rotations of Dodecahedron

Oh = B3 is the group of isometries of Cube

O ' Sym(4) is the group of rotations of Cube

Td = A3 ' Sym(4) is the group of isometries of Tetrahedron

T ' Alt(4) is the group of rotations of Tetrahedron

Th = T ∪ −T

While (point group) Isom(P) ⊂ Aut(G (P)) (combinatorial group),
Mani, 1971: for any 3-polytope P, there is a 3-polytope P ′ with
the same skeleton G = G (P ′) = G (P), such that the group
Isom(P ′) of its isometries is isomorphic to Aut(G ).
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8 families: symmetry groups

l 28 for {5, 6}v : C1, Cs , Ci ; C2, C2v , C2h, S4; C3, C3v , C3h, S6;
D2, D2h, D2d ; D3, D3h, D3d ; D5, D5h, D5d ; D6, D6h, D6d ; T ,
Td , Th; I , Ih (Fowler-Manolopoulos, 1995)

l 16 for {4, 6}v : C1, Cs , Ci ; C2, C2v , C2h; D2, D2h, D2d ; D3,
D3h, D3d ; D6, D6h; O, Oh (Deza-Dutour, 2005)

l 5 for {3, 6}v : D2, D2h, D2d ; T , Td (Fowler-Cremona,1997)

l 2 for {2, 6}v : D3, D3h (Grűnbaum-Zaks, 1974)

l 18 for {3, 4}v : C1, Cs , Ci ; C2, C2v , C2h, S4; D2, D2h, D2d ; D3,
D3h, D3d ; D4, D4h, D4d ; O, Oh (Deza-Dutour-Shtogrin, 2003)

l 5 for {2, 4}v : D2, D2h, D2d ; D4, D4h, all in [D2,D4h] (same)

l 3 for {1, 3}v : C3, C3v , C3h (Deza-Dutour, 2010)

l 22 for {2, 3}v : C1, Cs , Ci ; C2, C2v , C2h, S4; C3, C3v , C3h, S6;
D2, D2h, D2d ; D3, D3h, D3d ; D6, D6h; T , Td , Th (same)



General

8 families: Goldberg-Coxeter construction GCk,l(.)

Agregating groups C1={C1,Cs ,Ci}, Cm={Cm,Cmv ,Cmh,S2m},
Dm={Dm,Dmh,Dmd}, and T={T ,Td ,Th}, we get

l for {5, 6}v : C1, C2, C3, D2, D3, D5, D6, T, {I , Ih}
l for {2, 3}v : C1, C2, C3, D2, D3, {D6,D6h}, T

l for {4, 6}v : C1, C2\S4, D2, D3, {D6,D6h}, {O,Oh}
l for {3, 4}v : C1, C2, D2, D3, D4, {O,Oh}
l for {3, 6}v : D2, {T ,Td}
l for {2, 4}v : D2, {D4,D4h}
l for {2, 6}v : {D3,D3h}
l for {1, 3}v : C3\S6={C3,C3v ,C3h}

Spheres of blue symmetry are GCk,l from 1st such; so, given by
one complex (gaussian for k=4, Eisenstein for k=3, 6) parameter.
Goldberg, 1937 and Coxeter, 1971: {5, 6}v (I , Ih), {4, 6}v (O,Oh),
{3, 6}v (T ,Td). Dutour-Deza, 2004 and 2010: for other cases.
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V. Goldberg-Coxeter

construction



General

Goldberg-Coxeter construction GCk,l(.)

Take a 3- or 4-regular plane graph G . The faces of dual graph
G ∗ are triangles or squares, respectively.

Break each face into pieces according to parameter (k, l).
Master polygons below have area A(k2+kl+l2) or A(k2+l2),
where A is the area of a small polygon.

3−valent case

k=5

l=2
l=2

k=5

4−valent case



General

Gluing the pieces together in a coherent way

Gluing the pieces so that, say, 2 non-triangles, coming from
subdivision of neighboring triangles, form a small triangle, we
obtain another triangulation or quadrangulation of the plane.

The dual is a 3- or 4-regular plane graph, denoted GCk,l(G );
we call it Goldberg-Coxeter construction.

It works for any 3- or 4-regular map on oriented surface.



General

GCk,l(Cube) for (k , l) = (1, 0), (1, 1), (2, 0), (2, 1)

1,0 1,1

2,0 2,1



General

Goldberg-Coxeter construction from Octahedron

1,0 1,1 2,0

2,1



General

The case (k , l) = (1, 1)

3-regular case
GC1,1 is called leapfrog

(1
3 -truncation of the dual)
truncated Octahedron

4-regular case
GC1,1 is called medial

(1
2 -truncation)

Cuboctahedron



General

The case (k , l) = (k , 0) of GCk,l(G ): k-inflation

Chamfering (quadrupling) GC2,0(G ) of 8 1st ({a, b}, k)-spheres,
(a, b)=(2, 6), (3, 6), (4, 6), (5, 6) and (2, 4), (3, 4), (1, 3), (2, 3), are:

D3h (122) Td (86) Oh (128) Ih (2012)

D4h (44) Oh (86) C3v (62) D6h (43, 62)

For 4-regular G , GC2k2,0(G )=GCk,k(GCk,k(G )) by (k+ki)2=2k2i .



General

First four GCk,l(3× K2) and GCk,l(4× K2)

All ({2, 6}, 3)-spheres are Gk,l(3×K2): D3h, D3h, D3 if l=0, k, else.

D3h 3× K2 D3h leapfrog D3h G2,0 D3 G2,1

D4h 4× K2 D4h medial D4h G2,0 D4 G2,1



General

First four GCk,l(6×K2) and GCk,l(Trifolium)

D6h D3d G1,1 D6h G2,0 D6 G2,1

C3v C3h G1,1 C3v G2,0 C3 G2,1

All ({2, 3}, 6)-spheres are Gk,l(6×K2): C3v , C3h, C3 if l=0, k, else.



General

Plane tilings {44}, {36} and complex rings Z[i ], Z[w ]

The vertices of regular plane tilings {44} and {36} form each,
convenient algebraic structures: lattice and ring. Path-metrics
of those graphs are l1- 4-metric and hexagonal 6-metric.

{44}: square lattice Z2 and ring Z[i ]={z=k+li : k, l ∈ Z} of
gaussian integers with norm N(z)=zz=k2+l2=||(k, l)||2.
{3, 6}: hexagonal lattice A2={x ∈ Z3 : x0+x1+x2=0} and
ring Z[w ]={z=k+lw : k, l ∈ Z}, where w=e i π

3 =1
2(1+i

√
3),

of Eisenstein integers with norm N(z)=zz=k2+kl+l2=1
2 ||x ||

2

We identify points x=(x0, x1, x2) ∈ A2 with x0+x1w ∈ Z[w ].

A natural number n =
∏

i p
αi
i is of form n=k2+l2 if and only

if any αi is even, whenever pi ≡ 3(mod 4) (Fermat Theorem).
It is of form n = k2 + kl + l2 if and only if pi ≡ 2 (mod 3).

The first cases of non-unicity with gcd(k, l)=gcd(k1, l1)=1
are 91=92+9+12=62+30+52 and 65=82+12=72+42.
The first cases with l=0 are 72=52+15+32 and 52=42+32.
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General

The bilattice of vertices of hexagonal plane tiling {63}

Let us identify the hexagonal lattice A2 (or equilateral
triangular lattice of the vertices of the regular plane tiling
{36}) with Eisenstein ring (of Eisenstein integers) Z[w ].

The hexagon centers of {63} form {36}. Also, with vertices of
{63}, they form {36}, rotated by 90◦ and scaled by 1

3

√
3.

The complex coordinates of vertices of {63} are given by
vectors v1=1 and v2=w . The lattice L=Zv1+Zv2 is Z[w ].

The vertices of {63} form bilattice L1 ∪ L2, where the bipartite
complements, L1=(1+w)L and L2=1+(1+w)L, are stable
under multiplication. Using this,

GCk,l(G ) for 6-regular graph G can be defined similarly to 3- and
4-regular case, but only for k + lw ∈ L2, i.e. k ≡ l ± 1 (mod 3).



General

Ring formalism

Z[i ] (gaussian integers) and Z[ω] (Eisenstein integers) are
unique factorization rings

Dictionary

3-regular G 4-regular G 6-regular G
the ring Eisenstein Z[ω] gaussian Z[i ] Eisenstein Z[ω]

Euler formula
∑

i (6− i)pi=12
∑

i (4− i)pi=8
∑

i (3− i)pi=6
curvature 0 hexagons squares triangles
ZC-circuits zigzags central circuits both
GC11(G ) leapfrog graph medial graph or. tripling



General

Goldberg-Coxeter operation in ring terms

Associate z=k+lw (Eisenstein) or z=k+li (gaussian integer)
to the pair (k, l) in 3-,6- or 4-regular case. Operation GCz(G )
correspond to scalar multiplication by z=k+lw or k+li .

Writing GCz(G ), instead of GCk,l(G ), one has:

GCz(GCz ′(G )) = GCzz ′(G )

If G has v vertices, then GCk,l(G ) has vN(z) vertices, i.e.,
v(k2+l2) in 4-regular and v(k2+kl+l2) in 3- or 6-reg. case.

GCz(G ) has all rotational symmetries of G in 3- and 4-regular
case, and all symmetries if l=0, k in general case.

GCz(G )=GCz(G ) where G differs by a plane symmetry only
from G . So, if G has a symmetry plane, we reduce to 0≤l≤k;
otherwise, graphs GCk,l(G ) and GCl ,k(G ) are not isomorphic.
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v(k2+l2) in 4-regular and v(k2+kl+l2) in 3- or 6-reg. case.

GCz(G ) has all rotational symmetries of G in 3- and 4-regular
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GCk,l(G ) for 6-regular plane graph G and any k , l

Bipartition of G ∗ gives vertex 2-coloring, say, red/blue of G .

Truncation Tr(G ) of {1, 2, 3}v is a 3-regular {2, 4, 6}6v .

Coloring white vertices of G gives face 3-coloring of Tr(G ).
White faces in Tr(G ) correspond to such in GCk,l(Tr(G )).

For k ≡ l ± 1 (mod 3), i.e. k + lw ∈ L2, define GCk,l(G ) as
GCk.l(Tr(G )) with all white faces shrinked.

If k ≡ l ((mod 3), faces of Tr(G ) are white in GCk,l(Tr(G )).
Among 3 faces around each vertex, one is white. Coloring
other red gives unique 3-coloring of GCk,l(Tr(G )). Define
GCk,l(G ) as pair G1,G2 with Tr(G1)=Tr(G2)=GCk,l(Tr(G ))
obtained from it by shrinking all red or blue faces.

GC1,0(G ) = G and GC1,1(G ) is oriented tripling.



General

Oriented tripling GC1,1(G ) of 6-regular plane graph G

Let C1,C2 be bipartite classes of G ∗. For each Ci , oriented
tripling OrCi

(G ) (or GC1,1(G )) is 6-regular plane graph coming
by vertex of G → 3 vertices and 4 triangular faces of OrCi

(G ).
Symmetries of OrCi

(G ) are symmetries of G preserving Ci .

Orient edges of Ci clockwise. Select 3 of 6 neighbors of each
vertex v : {2, 4, 6} are those with directed edge going to v ; for
{1, 5, 5}, edges go to them.

4

6

1

23

5
1

2

3
4

5

6

Any z=k+lw 6=0 with k≡l (mod 3) can be written as
(1+w)s(k ′+l ′w)w , where s≥0 and k ′≡l ′ ± 1 (mod 3).
So, GCk,l(G )=Gk ′,l ′(Or s(G )).



General

Examples of oriented tripling GC1,1(G )

Below: {2, 3}2 and {2, 3}4 have unique oriented tripling.

2 D6h 6 D3d 4 Td 12 Th

1 C3v 3 C3h 9 C3v 27 C3h 81 C3v

Above: first 4 consecutive orient triplings of the Trifolium.



General

VI. Parameterizing

({a, b}, k)-spheres



General

Example: construction of the ({3, 6}, 3)-spheres in Z [ω]

In the central triangle
ABC, let A be the origin
of the complex plane

The corresponding
triangulation

All ({3, 6}, 3)-spheres
come this way; two
complex parameters
in Z [ω] defined by
the points B and C



General

Parameterizing ({a, b}, k)-spheres
Thurston, 1998 implies: ({a, b}, k)-spheres have pa-2 parameters
and the number of v -vertex ones is O(vm−1) if m=pa-2 > 2.
Idea: since b-gons are of zero curvature, it suffices to give relative
positions of a-gons having curvature 2k − a(k − 2) > 0.
At most pa − 1 vectors will do, since one position can be taken 0.
But once pa − 1 a-gons are specified, the last one is constrained.
The number of m-parametrized spheres with at most v vertices is
O(vm) by direct integration. The number of such v -vertex spheres
is O(vm−1) if m > 1, by a Tauberian theorem.

Goldberg, 1937: {a, 6}v (highest 2 symmetries): 1 parameter

Fowler and al., 1988: {5, 6}v (D5, D6 or T ): 2 parameters.

Grűnbaum-Motzkin, 1963: {3, 6}v : 2 parameters.

Deza-Shtogrin, 2003: {2, 4}v ; 2 parameters.

Thurston, 1998: {5, 6}v : 10 (again complex) parameters.
Graver, 1999: {5, 6}v : 20 integer parameters.
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Grűnbaum-Motzkin, 1963: {3, 6}v : 2 parameters.

Deza-Shtogrin, 2003: {2, 4}v ; 2 parameters.

Thurston, 1998: {5, 6}v : 10 (again complex) parameters.
Graver, 1999: {5, 6}v : 20 integer parameters.



General

8 families: number of complex parameters by groups

l {5, 6}v C1(10), C2(6), C3(4), D2(4), D3(3), D5(2), D6(2),
T(2), {I , Ih}(1)

l {4, 6}v C1(4), C2\S4(3), D2(2), D3(2), {D6,D6h}(1),
{O,Oh}(1)

l {3, 4}v C1(6), C2(4), D2(3), D3(2), D4(2), {O,Oh}(1)

l {2, 3}v C1(4), C2(3?), C3(3?), D2(2?), D3(2?), T(1),
{D6,D6h}(1)

l {3, 6}v D2(2), {T ,Td}(1)

l {2, 4}v D2(2), {D4,D4h}(1)

l {2, 6}v {D3,D3h}(1)

l {1, 3}v {C3,C3v ,C3h}(1)

Thurston, 1998 implies: ({a, b}, k)-spheres have pa-2 parameters
and the number of v -vertex ones is O(vm−1) if m=pa-2 > 1.



General

Number of complex parameters

{5, 6}v

Group #param.

C1 10
C2 6

C3,D2 4
D3 3

D5,D6,T 2
I 1

{3, 4}v

Group #param.

C1 6
C2 4
D2 3

D3,D4 2
O 1

{4, 6}v

Group #param.

C1 4
C2 3

D2,D3 2
D6,O 1

{2, 3}v

Group #param.

C1 4
C2,C3 3?
D2,D3 2?
D6,T 1

{3, 6}v - and {2, 4}v : 2 complex parameters but 3 natural ones will
do: pseudoroad length, number of circumscribing railroads, shift.



General

VII. Railroads and tight

({a, b}, k)-spheres



General

ZC-circuits

The edges of any plane graph are doubly covered by zigzags
(Petri or left-right paths), i.e., circuits such that any two but
not three consecutive edges bound the same face.

The edges of any Eulerian (i.e., even-valent) plane graph are
partitioned by its central circuits (those going straight ahead).

A ZC-circuit means zigzag or central circuit as needed.
CC- or Z-vector enumerate lengths of above circuits.

A railroad in a 3-, 4- or 6-regular plane graph is a circuit of 6-,
4- or 3-gons, each adjacent to neighbors on opposite edges.
Any railroad is bound by two ”parallel” ZC-circuits. It (any if
4-, simple if 3- or 6-regular) can be collapsed into 1 ZC-circuit.
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General

Railroad in a 6-regular sphere: examples

APrism3 with 2 base 3-gons doubled is the {2, 3}6 (D3d) with
CC-vector (32, 43), all five central circuits are simple.
Base 3-gons are separated by a simple railroad R of six 3-gons,
bounded by two parallel central 3-circuits around them. Collapsing
R into one 3-circuit gives the {2, 3}3 (D3h) with CC-vector (3; 6).

D3d (32, 43) D3h (3; 6) Td (34)

Above {2, 3}4 (Td) has no railroads but it is not strictly tight, i.e.
no any central circut is adjacent to a non-3-gon on each side.



General

Railroads flower: Trifolium {1, 3}1

Railroads can be simple or self-intersect, including triply if k = 3.
First such Dutour ({a, b}, k)-spheres for (a, b) = (4, 6), (5, 6) are:

{4, 6}66(D3h) twice {5, 6}172(C3v )

Which plane curves with at most triple self-intersectionss come so?



General

Number of ZC-circuits in tight ({a, b}, k)-sphere

Call an ({a, b}, k)-sphere tight if it has no railroads.

l ≤ 15 for {5, 6}v Dutour, 2004

l ≤ 9 for {4, 6}v and {2, 3}v Deza-Dutour, 2005 and 2010

l ≤ 3 for {2, 6}v and {1, 3}v same

l ≤ 6 for {3, 4}v Deza-Shtogrin, 2003

l Any {3, 6}v has ≥ 3 zigzags with equality iff it is tight.
All {3, 6}v are tight iff v

4 is prime and none iff it is even.

l Any {2, 4}v has ≥ 2 central circuits with equality iff it is
tight. There is a tight one for any even v .

First tight ones with max. of ZC-circuits are GC21({a, b}min):
{5, 6}140(I ), {4, 6}56(O), {2, 6}14(D3), {3, 4}30(0); {2, 3}44(D3h)
and {a, b}min: {3, 6}4(Td), {2, 4}2(D4h). Besides {2, 3}44(D3h),
ZC-circuits are: (2815), (218), (143), (106), (43), (22), all simple.



General

Number of ZC-circuits in tight ({a, b}, k)-sphere

Call an ({a, b}, k)-sphere tight if it has no railroads.

l ≤ 15 for {5, 6}v Dutour, 2004

l ≤ 9 for {4, 6}v and {2, 3}v Deza-Dutour, 2005 and 2010

l ≤ 3 for {2, 6}v and {1, 3}v same

l ≤ 6 for {3, 4}v Deza-Shtogrin, 2003

l Any {3, 6}v has ≥ 3 zigzags with equality iff it is tight.
All {3, 6}v are tight iff v

4 is prime and none iff it is even.

l Any {2, 4}v has ≥ 2 central circuits with equality iff it is
tight. There is a tight one for any even v .

First tight ones with max. of ZC-circuits are GC21({a, b}min):
{5, 6}140(I ), {4, 6}56(O), {2, 6}14(D3), {3, 4}30(0); {2, 3}44(D3h)
and {a, b}min: {3, 6}4(Td), {2, 4}2(D4h). Besides {2, 3}44(D3h),
ZC-circuits are: (2815), (218), (143), (106), (43), (22), all simple.



General

Maximal number Mv of central circuits in any {2, 3}v

Mv = v
2 + 1, v

2 + 2 for v ≡ 0, 2 (mod 4). It is realized by the

series of symmetry D2d with CC-vector 2
v
2 , 2v0,v and of

symmetry D2h with CC-vector 2
v
2 , v2

0, v−2
4

if v ≡ 0, 2 (mod 4).

For odd v , Mv is b v
3 c+ 3 if v ≡ 2, 4, 6 (mod 9) and b v

3 c+ 1,
otherwise. Define tv by v−tv

3 = b v
3 c. Mv is realized by the

series of symmetry C3v if v ≡ 1 (mod 3) and D3h, otherwise.
CC-vector is 3b

v
3
c, (2b v

3 c+ tv )3
0,b v−2tv

9
c if v ≡ 2, 4, 6 (mod 9)

and 3b
v
3
c, (2v + tv )0,v+2tv , otherwise.

The minimal number of central circuits, 1, have c-knotted
{2, 3}v . They correspond to (some of) plane curves with only
triple self-intersection points. For v = 4, . . . , 14, 15, their
number is 1, 0, 2, 0, 2, 0, 2, 0, 4, 0, 11, 9, 1..



General

VIII. Tight pure

({a, b}, k)-spheres



General

Tight ({a, b}, k)-spheres with only simple ZC-circuits

Call ({a, b}, k)-sphere pure if any of its ZC-circuits is simple,
i.e. has no self-intersections. Such ZC-circuit can be seen as a
Jordan curve, i.e. a plane curve which is topologically
equivalent to (a homeomorphic image of) the unit circle.

Any ({3, 6}, 3)- or ({2, 4}, 4)-sphere is pure. They are tight if
and only if have three or, respectively, two ZC-circuits.

Any ZC-circuit of {2, 6}v or {1, 3}v self-intersects.

The number of tight pure ({a, b}, k)-spheres is:

l 9? for {5, 6}v computer-checked for v ≤ 300 by Brinkmann

l 2 for {4, 6}v Deza-Dutour, 2005

l 8 for {3, 4}v same

l 5 for {2, 3}v same, 2010
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All tight ({3, 4}, 4)-spheres with only simple central circuits

6 Oh (43)
Octahedron

12 Oh (64)
GC11(Oct.) 12 D3h (64)

14 D4h

(62, 82)

20 D2d (85)
22 D2h

(83, 102)
30 O (106)
GC21(Oct.)

32 D4h

(104, 122)



General

All tight ({4, 6}, 3)-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog
GC11(Cube), truncated Octahedron.

6 Oh (64) 24 Oh (106)

Proof is based on a) The size of intersection of two simple zigzags
in any ({4, 6}, 3)-sphere is 0, 2, 4 or 6 and
b) Tight ({4, 6}, 3)-sphere has at most 9 zigzags.

For ({2, 3}, 6)-spheres, a) holds also, implying a similar result.
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Tight ({2, 3}, 6)-spheres with only simple ZC-circuits

2 D6h (23)
62

4 Td (34)
64

6 D3 no
12, 83

8 D2d (54, 4)
no

D6h (43, 62)
8 86 no

12 Th (66)
126

14 D6 no
146

All pure CC-tight: Nrs. 1,2,4,5,6. All pure Z-tight: Nrs. 1,2,3,6,7.
1st, 3rd are strictly CC-, Z-tight: all ZC-circuits sides touch 2-gons.



General

7 tight ({5, 6}, 3)-spheres with only simple zigzags

20 Ih (106) 28 Td (127) 48 D3 (169)
76 D2d

(224, 207)

88 T (2212) 92 Th

(246, 226)
140 I , (2815)

The zigzags of 1, 2, 3, 5, 7th above and next two form 7 Grűnbaum
arrangements of Jordan curves, i.e. any two intersect in 2 points.
The groups of 1, 5, 7th and {5, 6}60(Ih) are zigzag-transitive.



General

Two other such ({5, 6}, 3)-spheres

60 Ih (1810) 60 D3 (1810)

This pair was first answer on a question in Grűnbaum, 1967, 2003
Convex Polytopes about existence of simple polyhedra with the
same p-vector but different zigzags. The groups of above {5, 6}60

have, acting on zigzags, 1 and 3 orbits, respectively.



General

IX. Infinite families of

({a, b}, k)-maps on surfaces



General

Non-hyperbolic (R , k)-maps

Given R ⊂ N and a surface F2, an (R, k)-F2 is a k-regular
map M on F2 whose faces have gonalities i ∈ R.

Again, let our maps be non-hyperbolic, i.e., 1
k + 1

m ≥ 1
2 for

m = max{i ∈ R}. So, it holds m ≤ 2k
k−2 .

Euler characteristic χ(M) is v − e + f , where v , e and
f =

∑
i pi are the numbers of vertices, edges and faces of M.

Since k-regularity implies kv = 2e =
∑

i ipi , Euler formula
χ = v − e + f becomes 2χ(M)k =

∑
i pi (2k − i(k − 2)).

The family of (R, k)-maps can be infinite only if m = 2k
k−2

(i.e., for parabolic maps), when pm is not restricted.

Also, χ ≥ 0 with χ = 0 if and only if R = {m};
and all possible pairs (m, k) are (6, 3), (4, 4), (3, 6).

({a, b}, k)-maps have b= 2k
k−2 , pa=

χb
b−a and v= 1

k (apa + bpb).



General

Non-hyperbolic (R , k)-maps

Given R ⊂ N and a surface F2, an (R, k)-F2 is a k-regular
map M on F2 whose faces have gonalities i ∈ R.

Again, let our maps be non-hyperbolic, i.e., 1
k + 1

m ≥ 1
2 for

m = max{i ∈ R}. So, it holds m ≤ 2k
k−2 .

Euler characteristic χ(M) is v − e + f , where v , e and
f =

∑
i pi are the numbers of vertices, edges and faces of M.

Since k-regularity implies kv = 2e =
∑

i ipi , Euler formula
χ = v − e + f becomes 2χ(M)k =

∑
i pi (2k − i(k − 2)).

The family of (R, k)-maps can be infinite only if m = 2k
k−2

(i.e., for parabolic maps), when pm is not restricted.

Also, χ ≥ 0 with χ = 0 if and only if R = {m};
and all possible pairs (m, k) are (6, 3), (4, 4), (3, 6).

({a, b}, k)-maps have b= 2k
k−2 , pa=

χb
b−a and v= 1

k (apa + bpb).



General

The ({a, b}, k)-maps on torus and Klein bottle

The compact closed (i.e. without boundary) irreducible surfaces
are: sphere S2, torus T2 (two orientable), real projective (elliptic)
plane P2 and Klein bottle K2 with χ = 2, 0, 0, 1, respectively.

The maps ({a, b}, k)-T2 and ({a, b}, k)-K2 have a = b = 2k
k−2 .

We consider only polyhedral maps, i.e. no loops or multiple edges
(1- or 2-gons), and any two faces intersect in edge, point or ∅ only.

The smallest ones for (r , k)=(6, 3), (3, 6), (4, 4) are embeddings

as 6-regular triangulations: K7 and K3,3,3 (p3 = 14, 18);
as 3-regular polyhexes: Heawood graph (dual K7) and dual K3,3,3;
as 4-regular quadrangulations: K5 and K2,2,2 (p4 = 5, 6).

K5 and K2,2,2 are also smallest ({3, 4}, 4)-P2 and ({3, 4}, 4)-S2,
while K4 is the smallest ({4, 6}, 3)-P2 and ({3, 6}, 3)-S2.
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General

Smallest 3-regular maps on T2 and K2: duals K7, K3,3,3

3-regular polyhexes on T2, cylinder, Möbius surface, K2 are {63}’s
quotients by fixed-point-free group of isometries, generated by: two
translations, a transl., a glide reflection, transl. and glide reflection.
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General

8 families: symmetry groups with inversion

The point symmetry groups with inversion operation are: Th, Oh,
Ih, Cmh,Dmh with even m and Dmd ,S2m with odd m. So, they are

l 9 for {5, 6}v : Ci , C2h, D2h, D3d , D6h, S6, Th, D5d , Ih

l 7 for {2, 3}v : Ci , C2h, D2h, D3d , D6h, S6, Th

l 6 for {4, 6}v : Ci , C2h, D2h, D3d , D6h, Oh

l 6 for {3, 4}v : Ci , C2h, D2h, D3d , D4h, Oh

l 2 for {2, 4}v : D2h, D4h

l 1 for {3, 6}v : D2h

l 0 for {2, 6}v and {1, 3}v

(R, k)-maps on the projective plane are the antipodal quotients of
centrosymmetric (R, k)-spheres; so, halving their p-vector and v .

There are 6 infinite families of projective-planar ({a, b}, k)-maps.
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Smallest ({a, b}, k)-maps on the projective plane

The smallest ones for (a, b) = (4, 6), (3, 4), (3, 6), (5, 6) are:
K4 (smallest P2-quadrangulation), K5, 2-truncated K4, dual
K6 (Petersen graph), i.e., the antipodal quotients of Cube
{4, 6}8, {3, 4}10(D4h), {3, 6}16(D2h), Dodecahedron {5, 6}20.

The smallest ones for (a, b) = (2, 4), (2, 3) are points with 2,
3 loops; smallest without loops are 4×K2, 6×K2 but on P2.
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General

Smallest ({5, 6}, 3)-P2

The Petersen graph (in positive role) is the smallest P2-fullerene.
Its P2-dual, K6, is the antipodal quotient of Icosahedron.
K6 is also the smallest (with 10 triangles) triangulation of P2.



General

6 families on projective plane: parameterizing

l {5, 6}v : Ci , C2h, D2h, S6, D3d , D6h, Th, D5d , Ih

l {2, 3}v : Ci , C2h, D2h, S6, D3d , D6h, Th

l {4, 6}v : Ci , C2h, D2h, D3d , D6h, Oh

l {3, 4}v : Ci , C2h, D2h, D3d , D4h, Oh

l {2, 4}v : D2h, D4h

l {3, 6}v : D2h

({2, 3}, 6)-spheres Th and D6h are GCk,k(2×Tetrahedron) and, for
k ≡ 1, 2 (mod 3), GCk,0(6× K2), respectively. Other spheres of
blue symmetry are GCk,l with l = 0, k from the first such sphere.

So, each of 7 blue-symmetric families is described by one natural
parameter k and contains O(

√
v) spheres with at most vertices.
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General

({a, b}, k)-maps on Euclidean plane and 3-space

An ({a, b}, k)-E2 is a k-regular tiling of E2 by a- and b-gons.

({a, b}, k)-E2 have pa ≤ b
b−a and pb = ∞. It follows from

Alexandrov, 1958: any metric on E2 of non-negative curvature
can be realized as a metric of convex surface on E3.

Consider plane metric such that all faces became regular in it.
Its curvature is 0 on all interior points (faces, edges) and ≥ 0
on vertices. A convex surface is at most half-S2.

There are ∞ of ({a, b}, k)-E2’s if 2≤pa≤ b and 1 if pa=0, 1.

An ({a, b}, k)-E3 is a 3-periodic k ′-regular face-to-face tiling
of the Euclidean 3-space E3 by ({a, b}, k)-spheres.

Next, we will mention such tilings by 4 special fullerenes,
which are important in Chemistry and Crystallography. Then
we consider extension of ({a, b}, k)-maps on manifolds.
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X. Beyond surfaces



General

Frank-Kasper ({a, b}, k)-spheres and tilings

A ({a, b}, k)-sphere is Frank-Kasper if no b-gons are adjacent.

All cases are: smallest ones in 8 families, 3 ({5, 6}, 3)-spheres
(24-, 26-, 28-vertex fullerenes), ({4, 6}, 3)-sphere Prism6,
3 ({3, 4}, 4)-spheres (APrism4, APrism2

3, Cuboctahedron),
({2, 4}, 4)-sphere doubled square and two ({2, 3}, 6)-spheres
(tripled triangle and doubled Tetrahedron).

20, Ih 24 D6d 26, D3h 28, Td



General

FK space fullerenes

A FK space fullerene is a 3-periodic 4-regular face-to-face tiling of
3-space E3 by four Frank-Kasper fullerenes {5, 6}v .
They appear in crystallography of alloys, clathrate hydrates,
zeolites and bubble structures. The most important, A15, is below.



General

Other E3-tilings by ({a, b}, k)-spheres

An ({a, b}, k)-E3 is a 3-periodic k ′-regular face-to-face
E3-tiling by ({a, b}, k)-spheres. Some examples follow.

Deza-Shtogrin, 1999: first known non-FK space fullerene
({5, 6}, 3)-E3: 4-regular E3-tiling by {5, 6}20, {5, 6}24 and its
elongation ' {5, 6}36 (D6h) in proportion 7:2:1.

space cubites ({4, 6}, 3)-E3: 4-, 5- and 6-regular E3-tilings by
truncated Octahedron, by Prism6 and by Cube (Voronoi of
lattices A2×Z, Z3 and A∗

3=bcc with stars α3, Prism∗
3 and β3).

Also interesting will be those with (k ′ − 1)-pyramidal star.

space octahedrite ({3, 4}, 4)-E3: 8-regular (star γ3) E3-tiling
by Octahedron, Cuboctahedron in proportion 1:1. It is uniform
Delaunay tiling of J-complex (mineral perovskite structure).

Cf. H3-tilings: 6-regular {5, 3, 4} by {5, 6}20, (Löbell, 1931)
by {5, 6}24 and 12-reg. {5, 3, 5} by {5, 6}20, {4, 3, 5} by Cube.
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General

Fullerene manifolds

Given 3 ≤ a < b ≤ 6, {a, b}-manifold is a (d−1)-dimensional
d-valent compact connected manifold (locally homeomorphic
to Rd−1) whose 2-faces are only a- or b-gonal.

So, any i-face, 3 ≤ i ≤ d , is a polytopal i-{a, b}-manifold.

Most interesting case is (a, b) = (5, 6) (fullerene manifold),
when d = 2, 3, 4, 5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.

The smallest polyhex is 6-gon on T2. The “greatest”: {633},
the convex hull of vertices of {63}, realized on a horosphere.

Prominent 4-fullerene (600-vertex on S3) is 120-cell ({533}).
The ”greatest” polypent: {5333}, tiling of H4 by 120-cells.
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General

Projection of 120-cell in 3-space (G.Hart)

{533}: 600 vertices, 120 dodecahedral facets, |Aut| = 14400



General

4- and 5-fullerenes

All known finite 4-fullerenes are ”mutations” of 120-cell by
interfering in one of ways to construct it: tubes of 120-cells,
coronas, inflation-decoration method, etc.
Some putative facets: ' {5, 6}v (G ) with (v ,G )=(20,Ih),
(24,D6h), (26,D3), (28,Td), (30,D5h), (32,D3h), (36,D6h).

({5, 6}, 3)-E3: example of interesting infinite 4-fullerenes.

All known 5-fullerenes come from {5333}’s by following ways.
With 6-gons also: glue two {5333}’s on some 120-cells and
delete their interiors. If it is done on only one 120-cell, it is
R× S3 (so, simply-connected).
Finite compact ones: the quotients of {5333} by its symmetry
group (partitioned into 120-cells) and gluings of them.
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General

Quotient d -fullerenes

Selberg, 1960, Borel, 1963: if a discrete group of motions of a
symmetric space has a compact fundamental domain, then it
has a torsion-free normal subgroup of finite index.

So, the quotient of a d-fullerene by such symmetry group (its
points are group orbits) is a finite d-fullerene.

Exp. 1: Polyhexes on T2, cylinder, Möbius surface and K2 are
the quotients of {63} by discontinuous fixed-point-free group
of isometries, generated by: 2 translations, a translation, a
glide reflection, translation and glide reflection, respectively.

Exp 2: Poincaré dodecahedral space: the quotient of 120-cell
by Ih ; so, its f -vector is (5, 10, 6, 1) = 1

120 f(120-cell).

Cf. 6-, 12-regular H3-tilings {5, 3, 4}, {5, 3, 5} by {5, 6}20 and
6-regular H3-tiling by (right-angled) {5, 6}24.
Seifert-Weber, 1933 and Löbell, 1931 spaces are quotients of
last 2 with f -vectors (1, 6, p5=6, 1), (24, 72, 48+8=p5+p6, 8).
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