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1 The Basic math of fullerenes

Definition: A fullerene is a trivalent plane graph Γ = (V , E , F ) with
only hexagonal and pentagonal faces.

Notation:


V , the vertices;
E , the edges;
H , the hexagonal faces;
P , the pentagonal faces.

A perfect matching representing a collection of double bonds is called
a Kekulé structure for the fullerene. A Kekulé structure exists for
ever fullerene:

Theorem.[J. Petersen, 1891] Every 2-connected, trivalent plane
graph admits a perfect matching.
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The number of edges in a Kekulé structure, k is a convenient
parameter for expressing the numerical constants attached to a
fullerene:

Basic Formulas


|V | = 2k
|E | = 3k
|H | = k − 10
|P | = 12
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Some Basic Facts:
1) A fullerene has an even number of vertices.
2) The smallest is C20, the dodecahedron.
3) The most famous is C60 in the shape of the soccer ball.
4) The Callaway golf Ball is a model of an isomer of C660.

            

5) There is no fullerene with 22 vertices - exactly one hexagonal face.
6) For all k > 11, there is a fullerene with 2k vertices.
7) The number of fullerenes on 2k vertices grows at the rate of k9;
W. Thursten [21].

() July 20, 2010 0 / 0



To add to our examples, we introduce two infinite families of
fullerenes.

Icosahedral Fullerenes: The following construction, due to
Goldberg [11] and Coxeter [6], yields all fullerenes with icosahedral
symmetry: choose an equilateral triangle from the hexagonal
tessellation and copy it onto each face of an icosahedron.

the soccer ball

the dodecahedron
an isomer of C620
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Leap-frog Fullerenes: Starting with any fullerene the leap-frog
construction produces another fullerene on three times as many
vertices:
1) Interior to each face construct a smaller copy of that face;
2) rotate the copy 30 degrees (36 degrees for a pentagonal face);
3) connect vertices of the copies across edges of the original fullerene.

The soccer ball fullerene is built from the dodecahedron using the
leap-frog construction.
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2 Representing Fullerenes

In An Atlas of Fullerenes[10], Fowler and Manolopouls include
drawings of all fullerenes on 50 or fewer vertices and drawings of all
fullerenes with non-adjacent pentagonal faces on 100 or fewer
vertices over 2000 drawings in all.

The spiral method is one of the first ways of representing an arbitrary
fullerene to be considered. We illustrate this with the Callaway:
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One of the Callaway’s spiral sequences:

1, 82, 88, 94, 100, 106, 227, 233, 239, 245, 251, 332.
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Initially the following conjecture seemed very reasonable.

The Spiral Conjecture: Every fullerene may be described by a
spiral sequence.

However, a counterexample was included in the Atlas:
The isomer of C380 pictured below admits no spiral sequence:
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This model was constructed from a single sheet of chicken-wire.
Before we can describe just how to layout such a model, we must
define the coordinates that detail the relative positions of “nearby”
pentagonal faces.

(6)(6)

(5)(5,1)

(6)
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One may view a fullerene as a polyhedron with 12 corners (at the
pentagonal faces) with the segments joining “nearby” pentagons as
the edges of this polyhedron. This approach matches the way that
the icosahedral fullerenes are constructed.

Thinking of a fullerene as a polyhedron, we then wish then to cut it
along some of its edges and unfold it flat - without overlaps. The
Dürer Conjecture states that this can always be done.

Dürer Conjecture. Every convex polytope may be cut along its
edges and unfolded flat to a single simple (non-overlapping) polygon.

This conjecturer seems to be implicit in the work of Albrecht Dürer
(1471-1528) and is still (?) an open conjecture. Of course, our
polytopes have only 12 corners and the the conjecture is valid for our
polytopes. As we will see, the Callaway may be “unfolded” in several
different ways.
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The unfolding pictured here could be used to make a chicken-wire
model:

My first involvment with fullerenes was to generalize this approach to
a method for representing all fullerenes. This takes several steps:
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[Step 1] Identify the pentagonal faces with the vertices of K12.
[Step 2] Assign to each edge of K12 the distance (p + q) between the

pentagonal faces as vertices in the dual graph + |p−q|
p+q+1

.

[Step 3] Find a shortest spanning tree. (If the fullerene a non-trival
symmetry group, consider the graph consisting of the union of all
shortest spanning trees.) Call this the signature graph of the fullerene
[Step 4] Unfold the fullerene along the edges of a shortest spanning
tree.
[Step 5] Prove that this unfolding is a proper unfolding - no self
intersections.
[Step 6] Conclude that, since the unfolded polygon is uniquely
determined by its boundary, the fullerene is uniquely determined by
its labeled signature graph.
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The Callaway signature and one shortest spanning tree.
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Step 5 was not easy. I had originally avoid it by assuming that any
polygonal region of the hexagonal tessellation was uniquely
determined by its boundary curve even if it overlapped itself.

However, this “reasonable assumption” is simply false!
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3 Patches

By a graphite patch we mean a plane graph with all hexagonal faces
save one outside face, with all vertices on the boundary of the outside
face having degree 2 or 3 and with all other (internal) vertices having
degree 3.

While investigating graphite patches, Guo, Hansen and Zheng [18]
produced an ambiguous graphite patch - a patch not uniquely
determined by its boundary. That is, they produced two distinct
graphite patches with the same boundary curve.
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When the boundary curve of the Guo, Hansen and Zheng ambiguous
patches is traced in the hexagonal tessellation of the plane it
intersects itself. A smoothed version of the boundary curve of their
ambiguous patches is pictured below.
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The ambiguity here is topological: any local homeomorphism of the
unit circle onto the GHZ curve can be extended to a local
homeomorphism of the entire disk in two non-homotopic ways - see
Cargo & Graver, [4].
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In that paper we also proved that for a curve to be topologically
ambiguous, each extension to the entire disk must triple cover some
point.

Generalizing: (m, k)-patches are defined to correspond to the (m, k)
tessellation of the plane or hyperbolic plane. These have been studied
extensively:

• Brinkmann, Delgado Friedrichs, and von Nathusius [2] showed that
the number of faces in an ambiguous (m, k) patch is the same for all
possible interiors.
• Brinkmann, Graver and Justus extended that result to (m, k)
patches with one “defect.”
• Graver and Graves [16] proved that a graphite patch with at most
one pentagonal face and a “nice” boundary is unambiguous.
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By a fullerene patch we mean a subgraph of a fullerene obtained by
replacing all vertices, edges and faces on one side of an elementary
circuit by a single “outside” face. Several fullerene patches are
pictured below.

The two patches on the right are ambiguous they have identical
boundary curves but their interiors are different. While it is not
immediately obvious, the two patches on the left are unambiguous.
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The ambiguity demonstrated by the two patches on the right is
combinatorial: it is accomplished by rearranging the faces in a region
about the two pentagonal faces. The alteration of the third patch
that yields the forth patch is pictured below.
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This, the generalized Endo-Kroto construction [7], applies to all
fullerene patches containing two pentagonal faces joined by a simple
polygonal path of hexagonal faces.
So far in all of the investigations of patches just two types of
ambiguities have been discovered:

1) topological, requiring a triple overlap;
2) combinatorial, requiring at least two “defects” and where any
interior can be transformed to any other interior by a sequence of
Endo-Kroto alterations and inverse Endo-Kroto alterations.

I would very much like to prove that these are indeed the
only two possibilities!

Christy just described some of the progress that we, along with
Steve, have made toward proving this.
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4 Other Unfoldings

Another type of polygon of unfolding that is useful in studying
fullerenes:
1) Select a central point c in one of the faces of the polygon.
2) For each vertex, draw the ray from c through through that vertex.
3) Cut along each ray starting at the vertex and cutting away from c .
4) Unfold.
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This gives another unfolding of the Callaway that is a bit more
compact:
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Such a flat map could be used to navigate the fullerene; each atom
can be uniquely located using polar or cartesian coordinates.

5 Graph Theory Parameters

Vertex independence number The hexagonal tessellation is
bipartite; a large fullerene is “almost” bipartite. Hence we should
expect that the vertex independence number is approximately

|V |
2

= k

This is indeed the case, see [14].
The basic idea of this paper is:
1) Pair up “nearby” pentagons.
2) Contracting the edges of the polygonal path of hexagons joining
pairs yields a bipartite graph.
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3) Choose the largest color class and a coresponding independent
vertex set for the fullerene.
4) Maximize over all possible pairings.
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The Callaway’s best pairing is shown below. 32 edges are contracted
resulting in a bipartite graph on 628 vertices that is symmetric in the
blue and red vertices. The Callaway’s vertex independence number is
314.
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Face independence numberThe face independence number can be
approached in the same way. Looking at the hexagonal tessellation
we note that its dual is tripartite, that is, the tessellation is face
3-colorable. Once pentagonal faces are introduced this 3-coloring
scheme is destroyed. However, pairing up pentagonal faces can, in
some cases, restore the 3-coloring off the path joining the pentagons,
as pictured below.
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Unfortunately, this works only if the lengths of the two legs of the
path of hexagons joining the pentagons are congruent mod 3. In the
previous example, the leg lengths are 4 and 1; in the example
pictured below, the leg lengths are 4 and 2 and the 3-coloring around
the path does not match at the top.
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To compute the face independence number:
• We 3-color the faces of a “flat map” of a fullerene.
• This yields a 3-color the faces of the fullerene except along some of
the paths of the cutting lines.
• The size of largest color class over all possible unfoldings is the face
independence number.

To compute a bound, let h and p denote the number of hexagons and
pentagons in an independent face set I . Then, counting the vertices:

6|I | − 12 ≤ 6h + 5p ≤ |V | = 2k

Solving for I :
|I | ≤ 1

3
k + 2.
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This upper bound will be achieved, |I | = 1
3
k + 2, if and only if

equality holds in both for both inequalities:

6|I | − 12 ≤ 6h + 5p ≤ |V | = 2k

That is, if and only if
1) I includes all 12 pentagonal faces;
2) every vertex belongs to a face in I .
The fullerenes that satisfy these conditions are precisely the leap-frog
fullerenes (see [15]).
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The Fries and Clar numbers

An independent face set that achieve the 1
3
k + 2 bound is called a

perfect face independent set.

There is a strong connection between a perfect face independent set
I and a special Kekulé structure. Let K be the set of edges that do
not bound a face of I . Then by (ii) above, K is a Kekulé structure.
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In the picture below the faces of I and the edges of the corresponding
K are colored red.
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The benzene rings of a Kekulé structure K are those faces that have
3 of their edges in K . The Fries number of a fullerene is the
maximum number of benzene rings over all Kekulé structure.
To compute an upper bound on the Fries number let K be any
Kekulé structure and let xi denote the number of faces that have i of
their bounding edges in K . Then

3x3 + 2x2 + x1 = 2k
or

x3 = 2
3
k − 2

3
x2 − 1

3
x1.

Hence the Fries number is bounded above by 2
3
k with equality if and

only if x2 = x1 = 0; that is if and only if each face is either a benzene
ring or void (no edges of K on its boundary).

() July 20, 2010 0 / 0



In our example, the red faces are all void and the remaining blue,
yellow and uncolored faces are all benzene rings.
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Again the leap-frog fullerenes are precisely the fullerenes that achieve
this bound.
The Clar number of a fullerene is the maximum number of
independent benzene rings over all Kekulé structure.

To bound the Clar #, let C be an independent set of benzene rings
for the Kekulé structure K .
• Each face in C is bounded by 3 edges from K .
• Each edge in K can bound at most one benzene ring in C .
Hence 3|C | ≤ k or |C | ≤ 1

3
k .

Again the leap-frog fullerenes are the fullerenes that get closest to
this bound.

In the above example, both the blue and the yellow faces are
independent sets of benzene rings which come very close to 1

3
k in

size. The Callaway is not a leap-frog fullerene; hence its face
independence, Fries and Clar numbers will fall short of the upper
bounds. For good lower bounds, consider this almost face 3-coloring:
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• The set of blue edges (edges not bounding a blue face) fail to form
a Kekulé structure.
• The failures are restricted to regions around the segments joining
yellow pentagons and can be easily repaired.
• The repairs involve deleting the dark blue dashed edges and adding
the light blue edges.
• This Kekulé structure is no longer perfect and a some faces are
bounded by one or two edges of the Kekulé structure.
• These faces are labeled and we have x1 = 18 and x2 = 27
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• There are 98 red, 105 yellow, 105 blue and 24 white faces.
• The yellow faces (and the blue faces) form a face independent sets
of size 105 (1

3
k + 2 = 112).

• Using the formula we compute the Fries number to be at least 193:
2
3
k − 18− 9 = 193 (2

3
k = 220).

• All but 6 of the red faces are benzene rings, so the Clar number is
at least 92 (1

3
k = 110).

In general the partial face 3-colorings in a non leap-frog fullerene are
much more complicated. Some mathematical tools to deal with these
colorings is the subject of the talk coming up by Liz Hartung.
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Math. J. 43 (1937), pp 104-108.

J. E. Graver, The (m,k)-patch boundary code problem, MATCH
48 (2003) 189-196.

J. E. Graver, Encoding Fullerenes and Geodesic Domes, SIAM. J.
Discrete Math., 17, No. 4 (2004), pp 596-614

J. E. Graver, The independence number of fullerenes and
benzenoids, The European J. of Combinatorics, 27, No. 6 (2006)
pp 850-863.
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