Wowd distributed search engine

Computers in Scientific Discovery 5

Aleksandar Ilić
aleksandari@gmail.com
University of Niš, Serbia

Sheffield, July 2010
• Wowd
 – Distributed P2P real-time discovery & search engine
 – http://www.wowd.com/

• Graphs in Wowd
 – routable graphs
 – ranking in internet graph
 – ranking in social graph
Background

• Founded by Borislav Agapiev in 2007
• Development team is completely in Serbia (JAVA)
• Investors are USA venture capital firms
 – Draper Fisher Jurvetson, KPG Ventures, Stanford University
• Research in many cutting-edge fields
• **Studying topology and traffic of large-scale networks**
What is Wowd?

- Discovery
 - The hot list
- Summary
 - Hot Topics
- SearchStream
 - Real-Time Search
- The entire web
- A specific web site
- Your Facebook graph
- Twitter
Age of Information

Finding meaning in unstructured data requires using different techniques:

- **Google’s PageRank** - finding the relative importance of web pages for searching.
- **Social Network Analysis** - finding how groups are divided, who is the most popular and who hangs out with who...
- **Bioinformatics** - find which proteins function similarly.
- **Pattern Matching** - given a pattern find all the instances of a subgraph of this pattern.
Reference search vs. Real-time discovery

Google: reference search
I am looking for information on X
(1) Think of something
(2) Go to Google, type it in, hit enter
(3) Look through the results, refine query as needed

Wowd: discovery in real-time
I am watching for developments (in X)
(1) Wonder what’s going on
(2) Go to Wowd, look at the Hot List, Hot Topics
(3) Click on a topic of interest, watch new material roll in
Graphs in Wowd

• construction of routable graph of computers
 – millions of vertices

• ranking in internet graph
 – from 100 million to tens of billion of vertices

• ranking in social graph
 – 10-100 million of vertices

• graphs in bioinformatics
 – from 100 vertices to 100 million of vertices (proteins, molecules, atoms)
Routable graphs

• set of nodes (computers) in a distributed network
• how can any node get to any other node
 – as fast as possible
• create an algorithm for constructing a graph
Routable graphs

- vertices are labeled
 - random binary 64bit number
- directed
- routable
 - must be possible to find a path to any label
 - labels of neighbors (only) are known

path from 5 to 4?
Routable graphs

• structure must be defined
 – ordering:
 • each vertex must have connection to first lower and first higher
 • skip lists:

– distance:
 • for any label, each must have connection to at least one with closer label
 • XOR distance:
Routable graphs

- routable k-connected
 - only findable paths are considered
- Dynamic
 - adding and removing vertices, while keeping requirements
 - locality of change
 - adding vertex (only edges to and from it can be added)
 - removing vertex (only edges instead of removed ones are allowed)
- degree of nodes is limited
 - maintenance limit
Routable graphs

Diagram showing a tree structure with nodes labeled with binary sequences, illustrating the concept of routable graphs.
Routable graphs – in numbers

<table>
<thead>
<tr>
<th></th>
<th>V(G)</th>
<th></th>
<th>Max degree</th>
<th>Average distance</th>
<th>Theoretical optimum</th>
<th>Average/Theor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{10} (1K)</td>
<td>191</td>
<td>1.89</td>
<td>1.81</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{15} (32K)</td>
<td>351</td>
<td>2.77</td>
<td>1.99</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{20} (1M)</td>
<td>511</td>
<td>3.62</td>
<td>2.75</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{22} (4M)</td>
<td>575</td>
<td>3.93</td>
<td>2.92</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{24} (16M)</td>
<td>639</td>
<td>4.29</td>
<td>2.98</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: theoretical optimum with respect to only max degree constraint
Degree/diameter problem

• Given natural numbers Δ and D, find the largest possible number of nodes $n_{\Delta,D}$ in a graph of maximum degree Δ and diameter D.

• Moore bound:

$$n_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \Delta(\Delta - 1)^2 + ... + \Delta(\Delta - 1)^{D-1}$$

• Open question: Does there exist a Moore graph of diameter 2 and degree 57?
Ranking in internet graph

• set of internet pages

• structure – links between them

• how to rank/sort them?
Ranking in internet graph

- random surfer model

- rank of pages = probability on being on each page

- if A is adjacency matrix, it becomes:

 \[r = \lambda A r + (1 - \lambda) \]

- converges if sum of each row is ≤1

- solution is largest eigenvalue
Ranking in internet graph

Edge weights:

- uniform \(e(u, v) = \frac{1}{|N(u)|} \)

 - Google’s PageRank

- actual probability of surfer following that link

 - ours EdgeRank (patented)

 - simplified: count clicks on each link, and use:

\[
e(u, v) = \frac{c(u, v)}{\sum_{t \in N(u)} c(u, t)}
\]
Ranking in internet graph

Distributed iterative calculation

• number of needed iterations is small
 – initial: 5-10 iterations
 – new pages: 2-3 iterations
• \(O(\text{iter} E(G)) \) and trivially distributed
Ranking in social graph

• set of social users
 – Twitter users
 • graph publicly available
 • directed social graph

• how to rank/sort them?
 – needed to best use attention frontier

• same idea – random walk
Applications

• **Global alignment of multiple protein-protein interaction networks** (undirected collection of pairwise interactions on a set of proteins): Given a pair of weighted PPI networks (and a list of pairwise sequence similarities between proteins in the two networks) we need to find the best overall match between these networks.

• **Distributed and scalable solution for the existing biological databases**
Thank you!

Discover what’s popular on the web