Wowd distributed search engine

Computers in Scientific Discovery 5

Aleksandar Ilić

aleksandari@gmail.com University of Niš, Serbia

Sheffield, July 2010

The University Of Sheffield.

- Wowd
 - Distributed P2P real-time discovery & search engine
 http://www.wowd.com/
- Graphs in Wowd
 - routable graphs
 - ranking in internet graph
 - ranking in social graph

Background

- Founded by Borislav Agapiev in 2007
- Development team is completely in Serbia (JAVA)
- Investors are USA venture capital firms

 Draper Fisher Jurvetson, KPG Ventures, Stanford University
- Research in many cutting-edge fields
- Studying topology and traffic of large-scale networks

What is Wowd?

Age of Information

Finding meaning in unstructured data requires using different techniques:

- **Google's PageRank** finding the relative importance of web pages for searching.
- Social Network Analysis finding how groups are divided, who is the most popular and who hangs out with who...
- **Bioinformatics** find which proteins function similarly.
- **Pattern Matching** given a pattern find all the instances of a subgraph of this pattern.

Reference search vs. Real-time discovery

Google: reference search

I am looking for information on X

(1) Think of something(2) Go to Google, type it in, hit enter(3) Look through the results, refine query as needed

Wowd: discovery in real-time

I am watching for developments (in X)

- (1) Wonder what's going on
- (2) Go to Wowd, look at the Hot List, Hot Topics
- (3) Click on a topic of interest, watch new material roll in

Graphs in Wowd

- construction of routable graph of computers

 millions of vertices
- ranking in internet graph
 - from 100 million to tens of billion of vertices
- ranking in social graph
 - 10-100 million of vertices
- graphs in bioinformatics
 - from 100 vertices to 100 million of vertices (proteins, molecules, atoms)

- set of nodes (computers) in a distributed network
- how can any node get to any other node

as fast as possible

• create an algorithm for constructing a graph

- vertices are labeled
 - random binary 64bit number
- directed
- routable
 - must be possible to find a path to any label
 - labels of neighbors (only) are known

path from 5 to 4?

- structure must be defined
 - ordering:
 - each vertex must have connection to first lower and first higher
 - skip lists:

- distance:
 - for any label, each must have connection to at least one with closer label
 - XOR distance:

- routable k-connected
 - only findable paths are considered
- Dynamic
 - adding and removing vertices, while keeping requirements
 - locality of change
 - adding vertex (only edges to and from it can be added)
 - removing vertex (only edges instead of removed ones are allowed)
- degree of nodes is limited
 - maintenance limit

Routable graphs – in numbers

V(G)	Max degree	Average distance	Theoretical optimum	Average/Theor.
2 ¹⁰ (1K)	191	1.89	1.81	1.04
2 ¹⁵ (32K)	351	2.77	1.99	1.39
2 ²⁰ (1M)	511	3.62	2.75	1.32
2 ²² (4M)	575	3.93	2.92	1.35
2 ²⁴ (16M)	639	4.29	2.98	1.44

Note: theoretical optimum with respect to only max degree constraint

Degree/diameter problem

- Given natural numbers Δ and D, find the largest possible number of nodes $n_{\Delta,D}$ in a graph of maximum degree Δ and diameter D.
- Moore bound:

 $n_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \Delta(\Delta - 1)^{2} + \ldots + \Delta(\Delta - 1)^{D-1}$

• **Open question**: Does there exist a Moore graph of diameter 2 and degree 57?

- set of internet pages
- structure links between them
- how to rank/sort them?

• random surfer model

- rank of pages = probability on being on each page
- if A is adjacency matrix, it becomes: $r = \lambda A r + (1 - \lambda)$
- converges if sum of each row is ≤ 1
- solution is largest eigenvalue

Edge weights:

- uniform
$$e(u,v) = \frac{1}{|N(u)|}$$

Google's PageRank

- actual probability of surfer following that link
 - ours EdgeRank (patented)
 - simplified: count clicks on each link, and use:

$$e(u,v) = \frac{c(u,v)}{\sum_{t \in N(u)} c(u,t)}$$

Distributed iterative calculation

number of needed iterations is small

-initial: 5-10 iterations

-new pages: 2-3 iterations

• $O (_{iter} E(G))$ and trivially distributed

Ranking in social graph

- set of social users
 - Twitter users
 - graph publicly available
 - directed social graph
- how to rank/sort them?
 - needed to best use attention frontier
- same idea random walk

Applications

- Global alignment of multiple protein-protein interaction networks (undirected collection of pair wise interactions on a set of proteins): Given a pair of weighted PPI networks (and a list of pair wise sequence similarities between proteins in the two networks) we need to find the best overall match between these networks.
- Distributed and scalable solution for the existing biological databases

Thank you!

