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Fullerenes

In chemistry: carbon ‘sphere’-shaped molecules

In mathematics: cubic planar graphs, all of whose faces are pentagons

and hexagons.
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Euler’s formula for planar graphs

# faces = # edges - # vertices + 2

⇒ In a fullerene: 12 pentagons and all other faces hexagonal.
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Buckminsterfullerene
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Our motivation for the study of fullerenes - structural
properties of fullerenes
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Existence of Hamilton (or long) cycles or paths in graphs

The question of finding or proving existence of Hamilton (or long) cycles
or paths in graphs has long been an active area of research.

Hamilton cycle = simple cycle traversing every vertex

Hamilton path = simple path traversing every vertex

Two particular instances of this general problem are:

Hamilton cycles/paths in vertex-transitive graphs (Lovasz,’69)

Hamilton cycles in fullerenes - a special case of one of Barnette’s
conjectures.
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Lovasz, 1969

Does every connected vertex-transitive graph have a Hamilton path?

A graph X = (V ,E ) is vertex-transitive if for any pair of vertices u,v
there exists an automorphism α such that α(u) = v.
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Examples
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VTG without Hamilton cycle

Only four connected VTG (n > 2) without Hamilton cycle are
known:

Petersen graph

truncated Petersen graph

Coxeter graph

truncated Coxeter graph
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VTG without Hamilton cycle
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The truncation of the Petersen graph

Klavdija Kutnar University of Primorska, Slovenia STRUCTURAL PROPERTIES OF FULLERENES



Hamiltonicity of Cayley graphs

Given a group G and a subset S of G \ {1} such that S = S−1, the
Cayley graph Cay(G ,S) has vertex set G and edges of the form

{g , gs} for all g ∈ G and s ∈ S .

Every Cayley graph is vertex-transitive.

There exist vertex-transitive graphs that are not Cayley.

Conjecture

Every connected Cayley graph has a Hamilton cycle.
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Example
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Hamiltonicity of cubic Cayley graphs

Given a group G and a generating set S of G , the Cayley graph
Cay(G ,S) is cubic iff |S | = 3 and

S = {a, b, c | a2 = b2 = c2 = 1} or

S = {a, b, b−1 | a2 = bs = 1}.
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Hamiltonicity of cubic Cayley graphs

Theorem (Glover, Marušič, 2007)

Let s ≥ 3 be an integer, let G be a group with a presentation
G = 〈a, b | a2 = bs = (ab)3 = 1, ect.〉, and let S = {a, b, b−1}. Then

if |G | ≡ 2(mod 4) the Cayley graph Cay(G ,S) has a Hamilton
cycle, and

if |G | ≡ 0(mod 4) the Cayley graph Cay(G ,S) has a cycle missing
out only two adjacent vertices and therefore a Hamilton path.

Theorem (Glover, KK, Marušič, 2009)

If s ≡ 0(mod 4) or s is odd then the Cayley graph Cay(G ,S) has a
Hamilton cycle.
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Method of proof I

Each Cayley graph we study has a canonical Cayley map given by an
embedding of the Cayley graph X = Cay(G , {a, b, b−1}) of the
(2, s, 3)-presentation of a group G = 〈a, b|a2 = 1, bs = 1, (ab)3 = 1, etc .〉
in the closed orientable surface of genus

1 + (s − 6)
|G |
12s

with faces |G |s disjoint s-gons and |G |3 hexagons.
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Method of proof II

How is this done?

By finding a tree of faces in this canonical Cayley map whose boundary
encompasses all vertices of the graph.
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Hamilton cycle in Buckminsterfullerene

The Buckminsterfullerene is one of only two vertex-transitive fullerenes

(the other is the Dodecahedron) and it is in fact a Cayley graph of A5.
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Hamiltonian tree of faces method

Essential ingredient in this Hamiltonian tree of faces method is the
concept of cyclic edge-connectivity and to use a similar method in
the context of fullerenes cyclic edge-connectivity of fullerenes need
to be studied.
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Cyclic edge connectivity of fullerenes
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Cyclically k-edge-connected graphs

Cycle-separating subset

A subset F ⊆ E (X ) of edges of X is said to be cycle-separating (or
cyclic-edge cutset) if X − F is disconnected and at least two of its
components contain cycles. A cycle-separating subset F of size k is
trivial if at least one of the resulting components induces a single k-cycle.

Cyclically k-edge-connected graphs

A graph X is cyclically k-edge-connected, if no set of fewer than k edges
is cycle-separating in X .
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Is it c .4.c?
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Is it c .4.c?

No.
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Cyclic edge connectivity of fullerenes

clearly the cyclic edge-connectivity ≤ 5,

(since by deleting 5 edges connecting a 5-gonal face, two
components each containing a cycle are obtained)

It was proven that it is in fact precisely 5 (Došlić, 2003).

The girth of a fullerene is 5.
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Cyclic edge connectivity of fullerenes

Let F be a fullerene admitting a nontrivial cycle-separating subset of size
5. Then F contains a ring R of five faces.

⇒ All faces in R are hexagonal.
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Types of rings of five hexagonal faces
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The pentacap

A planar graph on 15 vertices with 7 faces of which one is a
10-gon and six are pentagons.
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2 pentacaps = the dodecahedron
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Fullerenes with a nontrivial cyclic-5-cutset

Theorem (Marušič, KK, 2008 & Kardoš, Škrekovski, 2008)

Let F be a fullerene admitting a nontrivial cyclic-5-cutset. Then F
contains a pentacap, more precisely, it contains two disjoint antipodal
pentacaps.

Recently Shiu, Li and Chan (Australasian J. Combin., 2010) characterized

the spectrum of fullerenes admitting a nontrivial cyclic-5-cutset.
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(Non)-degenerate cyclic cutsets in fullerenes

A cyclic cutset F of a fullerene graph X is non-degenerate, if both
components of X − F contain precisely six pentagons. Otherwise, F is
degenerate.

Trivial cyclic cutsets are degenerate.

Non-trivial cyclic-5-edge cutsets are non-degenerate.

In 2008 Kardoš and Škrekovski characterized fullerenes admitting a
nontrivial cyclic-6-cutset.

Not all the non-trivial cyclic-6-cutsets of fullerenes are
non-degenerate.
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Non-degenerate cyclic-7-cutsets in fullerenes

Kardoš, Krnc, Lužar, Škrekovski, 2010

If there exists a non-degenerate cyclic-7-cutset in a fullerene then the
graph is a nanotube unless it is one of the two exceptions given in their
paper.

A fullerene is a nanotube, if it can be divided into a cylindrical part
containing only hexagons, and two caps, each containing six pentagons
and maybe some hexagons. Moreover, at least one of the pentagons
should have an edge incident to the outer face of a cap.
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Hamilton cycles in fullerenes
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Barnette’s conjecture

Barnette’s conjecture

Every 3-connected planar graph with largest face size 6 contains a
Hamilton cycle.

Weaker conjecture

Every fullerene contains a Hamilton cycle.
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Hamilton cycles in fullerenes

Theorem (Marušič, KK, 2008)

Let X be a fullerene admitting a nontrivial cyclic 5-cutset. Then X has a
Hamilton cycle.
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Leapfrog fullerenes

Leapfrog Leap is a composite operation which can be written as

Leap(F ) = Tr(Du(F ))
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Leapfrog fullerenes
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Hamilton cycles in leapfrog-fullerenes

Theorem (Marušič, 2007)

Let X be a fullerene with n vertices. Then the leapfrog-fullerene Le(X )
has a Hamilton cycle if n ≡ 2 (mod 4) and contains a long cycle missing
out only two adjacent vertices if n ≡ 0 (mod 4).

Klavdija Kutnar University of Primorska, Slovenia STRUCTURAL PROPERTIES OF FULLERENES



Hamilton cycles in leapfrog-fullerenes

Leap(C24)
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Hamilton cycles in leapfrog-fullerenes

Leap(C26)
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The method in the proof depend on purely graph-theoretic result

Theorem (Payan, Sakarovitch, 1975)

Let X be a cyclically 4-connected cubic graph of order n, and let S
be a maximum cyclically stable subset of V (X ). Then
|S | = b(3n − 2)/2c and more precisely, the following hold.

If n ≡ 2 (mod 4) then |S | = (3n − 2)/4, and X [S ] is a tree
and V (X ) \ S is an independent set of vertices;

If n ≡ 0 (mod 4) then |S | = (3n − 4)/4, and either X [S ] is a
tree and V (X ) \ S induces a graph with a single edge, or X [S ]
has two components and V (X ) \ S is an independent set of
vertices.
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Cyclically stable subsets
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Semiregular automorphisms in fullerenes
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Semiregular element of a permutation group

A semiregular element of a permutation group is a non-identity element
having all cycles of equal length in its cycle decomposition.

The Petersen graph has a semiregular automorphism with two orbits of
size 5.
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The dodecahedron given in Frucht’s notation relative to a semiregular
automorphism with 4 orbits of size 5.
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Semiregular automorphisms in vertex-transitive (di)graphs

Open problem (Marušič, 1981)

Is it true that a vertex-transitive digraph contains a semiregular
automorphism?

In the context of vertex-transitive graphs the existence of semiregular
automorphisms helps proving the existence of Hamilton paths/cycles for
some classes of such graphs.

It seems reasonable to expect that methods similar to those used for
finding Hamilton paths/cycles in vertex-transitive graphs could be
applied, at least in some cases, to fullerenes as well.

Motivated by this problem we recently characterized fullerenes with
regards to the existence of semiregular automorphisms in their
automorphism groups.
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Semiregular automorphisms in fullerenes

Theorem (Janežič, Marušič, KK, 2010)

Let F be a fullerene with non-trivial automorphism group. Then either F
admits a semiregular automorphism or Aut(F ) ∼= Z2, Z3 or S3.

The automorphism group Aut(F ) of a fullerene F is a subgroup of a
{2, 3, 5}-group (Fowler, Manolopoulos, Redmond and Ryan, 1993).

Let F be a fullerene admitting an automorphism α ∈ Aut(F ) of
order 5. Then α is a semiregular automorphism of F .

Leapfrog transformation enables us to construct an infinite family of
fullerenes with a prescribed non-trivial automorphism group and
having a semiregular automorphism.

On the other hand, there are also infinitely many fullerenes having
non-trivial automorphism groups without semiregular
automorphisms.
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Example of a fullerene having a semiregular automorphism
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Example of a fullerene without semiregular automorphisms

A fullerene of order 40 without a semiregular automorphism with the full

automorphism group isomorphic to the cyclic group Z3.
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Infinite family of fullerenes without semiregular automorphisms

The first fullerene (k = 0) in an infinite family of fullerenes without a

semiregular automorphism with the full automorphism group isomorphic

to the symmetric group S3.
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Infinite family of fullerenes without semiregular automorphisms

The second fullerene (k = 1) in an infinite family of fullerenes without a

semiregular automorphism with the full automorphism group isomorphic

to the symmetric group S3.
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Infinite family of fullerenes without semiregular automorphisms

The third fullerene (k = 2) in an infinite family of fullerenes without a
semiregular automorphism with the full automorphism group isomorphic
to the symmetric group S3.

Klavdija Kutnar University of Primorska, Slovenia STRUCTURAL PROPERTIES OF FULLERENES



Thank you !
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