An algorithm for determining the most stable vacancy clusters in diamond lattice

Istvan Laszlo

Budapest University of Technology , Budapest **Miklos Kertesz and Brad Slepetz** Department of Chemistry, Georgetown University, Washington, DC, USA

- Introduction

- Vacancy clusters in silicon and diamond
- Algorithm for construction of vacancy clusters in the diamond structure of carbon
 - Results
 - Conclusions

Introduction

In diamond more than 500 electronic and more than 150 vibrational optical centers have been documented Many of them are due to V_n vacancy centers.

Vacancy clusters in diamond and in silicon are detected by electron paramagnetic resonance, positron annihilation spectroscopy and other methods.

Usually they are produced by electron, neutron, or ion irradiations and by temperature annealing.

Vacancy: mono vacancy

Vacancy cluster: connected set of mono vacancies

 V_n : vacancy cluster of n mono vacancies

Vacancies and vacancy clusters will be represented by the missing atoms from the bulk

Fig. 1. Isochronal annealing-in and annealing-out of EPR spectra [4,7].

J. M. Baker, Diam. and Rel. Mater. 16 (2007) 216-219

Representation of a V_6 vacancy cluster

K. Iakoubovskii and A. Stesmans Phys. Stat. Sol (a) 201. (2004) 2509-2515

(e) V₉ (R7a) C_{2v}

(f) V₁₁ (R7) C_{1h}

(g) V13 (R8) C2v

(h) V7 (R7a) C2

(i) V₈ D_{2d}

(j) V₇ (R7) C_{1h}

J. M. Baker, Diam. and Rel. Mater. 16 (2007) 216-219

Based on the counting of dangling bonds, it has been proposed that closed ring structures of vacancies V_6 and V_{10} should be especially stable in silicon.

(D.J. Chadi and K.J. Chang, Phys. Rev. B38, 1523, (1988).)

Adamantane like vacancy clusters:

Vacancy cluster constructed by minimizing the number of dangling bonds in the vacancy cluster

Adamantane like vacancy clusters from V_2 to V_{14} in silicon.

J. L. Hastings et al., Phys. Rev. B56, 10215 (1997)
A. Bongiorno et al. Europhysics Letters 59, 608 (2000)
T.E.M. Staab et al., Phys. Rev. B65, 115210 (2002)

Adamantane like vacancy clusters from V_{15} to V_{18} in silicon.

A. Bongiorno et al. Europhysics Letters 59, 608 (2000) T.E.M. Staab et al., Phys. Rev. B65, 115210 (2002)

L. S. Hounsome et al. Phys. Stat. Sol (a) 202. (2005) 2182-2187

Our goal is to:

- a. Enumerate all distinct structures of V_n vacancy clusters with increasing n.
- b. Evaluate a large number of V_n vacancy clusters at a realistic level of quantum mechanics
- c. Interpret the driving forces of the distortions.

I. Laszlo, M. Kertesz, B. Slepetz, Y. Gogotsi Diamond Relat. Mater. (2010), doi:10.1016/j.diamond.2010.05.001

The method

-Super cell of N=216 atoms in diamond structure

- -The V_n vacancy is represented by taking away the V_n atomic cluster from the super cell
- Periodic boundary conditionTBDFT for the interactions

D. Porezag et al. Phys. Rev B51 (1995) 12947

-Conjugate gradient method for minimizing the E^{n}_{vac} total energy of the system of (216-n) atoms. (-1 < n < 15)

I. Laszlo, M. Kertesz, B. Slepetz, Y. Gogot Diamond Relat. Mater. (2010), doi:10.1016/j.diamond.2010.05.001 Relative stability of n-vacancy cluster geometries Formation energy

$$E_{F}^{n} = E_{vac}^{n} - \frac{N-n}{N} E_{cryst}^{N}$$

 $E_{\rm F}^{\rm n}$ Formation energy of n-vacancy cluster

 E_{vac}^n Total energy of super cell with N-n atoms

$$E_{\text{cryst}}^{N} = E_{\text{vac}}^{0}$$

$$E_{\text{FV}}^{n} = \frac{E_{\text{F}}^{n}}{n}$$
Formation energy per vacancy

Algorithm for the construction a diamond vacancy clusters

Selection of equivalent structures

Diagonalization of the modified adjacency matrix $D_{ij}=exp(-ar_{ij})$ of the corresponding complete graph.

 r_{ij} is the Euclidean distance in the diamond lattice Between vertices i and j. a = 1.0 Angstrom The number of all possible V_n vacancy clusters n : number of vacancies

- p : number of generated vacancy clusters
- q : number of in equivalent vacancy clusters

n	p	q	
1	1	1	
2	4	1	
3	6	1	
4	8	3	
5	30	7	
6	83	24	
7	328	88	
8	1357	385	
9	6617	1713	
10	32417	8112	
11	167511	38865	
12	869139	190081	
13	4574468	937194	
14	24139560	4660000	I. Laszlo, M. Kertesz, B. Slepetz, Y. Gogo Diamond Relat. Mater. (2010), doi:10.1016/j.diamond.2010.05.001

Algorithm for generating connected vacancy clusters

- 1. Start with V_1 and increase n one by one
- 2. Generate all possible V_n from V_{n-1}
- 3. Eliminate the equivalent vacancy clusters. I_n is the number of in-equivalent structures
- 4. Optimize the geometries of all I_n structures
- 5. Calculation of formation energies for all V_n
- 6. Keep only the M_n lowest energy vacancy clusters
 7.n=n+1 and GO TO 2. (The process terminates at a predetermined value n.)

I. Laszlo, M. Kertesz, B. Slepetz, Y. Gogotsi Diamond Relat. Mater. (2010), doi:10.1016/j.diamond.2010.05.001 Algorithm for generating connected vacancy clusters

Up to n=7, we included all possible vacancy clusters, for n > 7 we used the following parameters

$$M_7 = M_8 = M_9 = M_{10} = M_{11} = 5$$
 and

 $M_{12} = M_{13} = 7$

The number of all possible V_n vacancy clusters n : number of vacancies

- p : number of generated vacancy clusters
- q : number of in equivalent vacancy clusters

List of V_{4_L} parent structures for V_{5_k} structures

SN serial number SNP serial number of parent structures

		V ₅				
SN		SNP				
1 2 3 4 5 6 7	1 1 1 1 3 2	2 3 2	3			

V_{5_k}	SN = k
V_{4_L}	SNP = L

		Vé	
SN		SNP	
1	1		
2	1	5	
3	1	3	
4	1	3	4
5	1	2	5
6	1	4	
7	1	2	
8	2	3	
9	2	4	
10	2	3	4
11	3		
12	3	6	
13	3		
14	4	6	
15	3	4	5
16	4		
17	2	4	5
18	3	4	
19	3	4	6
20	2	4	7
21	3		
22	3	5	
23	5		
24	6		

		V ₇		
SN		SNP		
1	1	3	4	6
2	1	2	5	7
3	2	5	7	
4	2	6	15	
5	2	3		
6	2			
7	3	7	8	
8	2	3	15	
9	2	22		
10	2			
11	7			
12	3	11		
13	4	5	15	20
14	4	5	8	15
15	5			
16	3	12		
17	3	6	19	
18	2	23		
19	4	12	14	
20	3	13		
21	2	4	22	
22	2	5	23	
23	3	4	21	
24	3	4	18	
25	2	4	17	

- 147	-		- 160 C	
27	5	10	22	
28	3	5	22	
29	2	5	17	
30	3	5	10	
31	14	20		
32	4	19		
33	6	14	18	
34	6	7	20	
35	4	10	13	
36	10	18	20	
37	12			
38	6	10		
39	8	12		
40	12			
41	7	10	17	
42	17	20		
43	5	17	23	
44	9	16	2.0	
45	4	7	9	10
46	4	6	16	18
47	8	11	13	
48	11	22		
49	10	11	15	
50	12	14	15	

51	5	6	9	17
52	5	7	9	17
53	8	9	10	18
54	15	17	23	
55	9	15	17	18
56	15	18	22	
57	12	24		
58	8	10	21	
59	13	21		
60	10	12	19	
61	8	19	20	
62	11	21		
63	10	17	18	
64	8	17	22	
65	11	12	19	
66	13	22		
67	17	19	22	
68	14	19	24	
69	12	13	19	
70	10	15	16	17
71	3			
72	9	10	14	19
73	23			
74	18	19	21	
75	18			
76	12	19	24	
77	24			
78	13	15	18	
79	12	18	19	
80	12	21		
81	12	22		
82	15	21	22	
83	22			
84	14	16	18	19
85	15	22	23	
86	14	17		
87	15	19		
88	22	23		

Representation of a V_6 vacancy cluster

Coulson and Kearsley,

Proc. Roy. Soc. Ser. A241 (1957) 433

T_d

Td

V_{2_1} (6,4,4)

 $C_{2h} R4/W6^{20,35}$

V_{3_1} (8,5,5) 7 7 90000 7 90000

430b ₂ ⁰		$430b_2^0$
429a ₁ °		429a ₁ 0
428b1 ⁰		428b1 ⁰
427a2 ⁰		427a2 ⁰
426b ₂ ²	<u> </u>	426b ₂ ²
	\equiv	
422a ₁ 2 =	 	422a ₁ 2
421a ₁ 2		421a ₁ 2
420b ₁ ²		420b1 ²

V_{3_1}

 $C_{2v} R 5^{2,6}$

V_{4_1} (10,6,6)

7 5 5350 7 50555

429b ⁰	429b ⁰
428a ⁰	428a ⁰
427a ⁰	427a ⁰
426b ⁰	426b ⁰
425b ⁰	425b ⁰
424a ²	424a ²
=	
420b ²	420b ²
419a ² ===	419a ²
418b ²	$418b^{2}$
417a ²	417a ²
\wedge	A
C_2	X
XSK I X	XII

 V_{4_1}

C₂

	V _{5_1} (12,6,7)	400.30
428a ³⁹⁰ 427a ⁹⁰ 426a ⁹⁰ 425a ⁹⁰ 424a ⁹⁰ 423a ⁹⁰		429a ¹⁰ 428a ³⁰ 427a ³⁰ 426a ³⁰ 425a ³⁰ 424a ³⁰ 423a ³⁰
422a ² 421a ² 418a ² 417a ² 416a ² 415a ²		422a ^{°2} 418a ^{°2} 417a ^{°°2} 416a ^{°°2} 415a ^{°°2}

 $C_8 R 8^6$

 C_{3v}

 V_{4_2} (10,6,6) 2027-00-0-000-000-000-00

 C_{3v}

V_{4_1} (10,6,6) 429b⁰ 429b⁰ 428a⁰ 428a⁰ 427a⁰ 427a⁰ 426b⁰ 426b⁰ 425b⁰ 425b⁰ 424a². 424a² 420b²⁻-420b² 419a²==== 419a² 418b² 418b² 417a² 417a²

C₂

 C_2

 D_{3d}

V_{14_1} (20,10,18

			V_1			
SN	SNP	Х	Y	Ζ	Ef	E_{fV}
1		0	0	2	7.2720	7.2720
			V_2			
SN	SNP	Х	Y	Z	Ef	E _{fV}
1	1	1	-1	1	10.4547	5.2274
			V3			
SN	SNP	Х	Y	Ζ	Ef	$E_{\texttt{fV}}$
1	1	0	-2	0	13.8462	4.6154

			₩4				
SN	SNP	X	Y	Ζ	Ef	EfV	
1 2 3	1 1 1	-1 2 1	-3 0 -3	1 0 -1	16.4986 17.1631 17.2365	4.1246 4.2908 4.3091	

			v 5				
SN	SNP	Х	Y	Z	Ef	EfV	
1	1	-2	-2	2	18.9534	3.7907	
3	3	-1	-1	-1	19.8946	3.9789	
4 5	3 1	-1 0	-3 -4	1 2	19.9947 20.0330	3.9989 4.0066	
6 7	3 2	0 2	-4 -2	-2 2	20.5336 20.5732	4.1067 4.1146	

 $\nabla T \Sigma$

Conclusions

- -The adamantane like structures do not describe the vacancies in the diamond structure of carbon
- -The tendency of local graphitization stabilizes the surface of diamond vacancy clusters.
- -Each tetrahedron of graphitization produced an extra energy level in the gap.
- -We described all possible vacancy clusters up to V_7 .
- -Using five extra integers we described the structure of each voids.
- -There is a tendency for having graphite like vacancy surface