Weavings of the Cube and Other Polyhedra

Tibor Tarnai Budapest

Joint work with P.W. Fowler, S.D. Guest and F. Kovács

Contents

- Basket weaving in practice
- Weaving of the cube
- Geometrical approach
- Graph-theory based approach
- Extensions
- Conclusions

BASKET WEAVING IN PRACTICE

Open baskets

Japan pavilion, Aichi EXPO 2005

Japanese Government + Nihon-Sekkei Inc., Kumagaigumi Co.Ltd

Closed baskets

Closed baskets (balls)

WEAVING THE CUBE

2-way 2-fold weaving in the plane on a polyhedron

. (a) single strand; (b) parallel strands.

Cube, parallel

Cube, 45 degrees

Felicity Wood

Felicity Wood, 2006

GEOMETRICAL APPROACH

Definition

We talk about *wrapping*, if the physical weave is simplified to a *double cover*, where the up-down relationship of the strands has been "flattened out".

The Coxeter notation

 ${4,3+}_{b,c}$ S = b² + c²

The three classes of cube wrapping

b = 0 or c = 0 b = c $b \neq c, b \neq 0, c \neq 0$

Complete weavings and dual maps

(b.iv) $\{4,3+\}_{2,2}$

Tiling of the faces of the cube

Properties of strands

- The midline of a strand is a geodesic on the surface of the cube.
- Since *b* and *c* are positive integers, the midlines form closed geodesics (loops).
- If *b* and *c* are co-prime then all loops are congruent.
- For any given pair *b*, *c*, the lengths of all loops are equal.

One loop for b = 3, c = 1

Questions for given *b*, *c*

- How many strands are there?
- How large a torsion (twist) does a strand have? (What is the linking number of the two boundary lines of a strand?)
- What sort of knot does a strand have?

	Number of loops, n																
16	48	3	6	3	12	6	6	3	48	3	6	3	12	3	12	3	64
15	45	4	6	12	3	20	9	4	3	12	15	4	18	4	3	60	3
14	42	6	8	3	12	3	8	42	6	6	8	3	6	6	56	3	12
13	39	4	3	4	3	4	3	4	6	4	3	4	3	52	6	4	3
12	36	3	12	9	16	3	36	3	12	9	6	3	48	3	6	18	12
11	33	4	3	4	6	4	3	4	6	4	6	44	3	4	3	4	3
10	30	6	8	3	6	30	8	6	12	3	40	6	6	3	8	15	6
9	27	4	6	12	3	4	9	4	3	36	3	4	9	4	6	12	3
8	24	3	6	3	24	3	6	6	32	3	12	6	12	6	6	3	48
7	21	4	6	4	3	4	3	28	6	4	6	4	3	4	42	4	3
6	18	6	8	18	6	3	24	3	6	9	8	3	36	3	8	9	6
5	15	4	3	4	6	20	3	4	3	4	30	4	3	4	3	20	6
4	12	3	12	3	16	6	6	3	24	3	6	6	16	3	12	3	12
3	9	4	3	12	3	4	18	4	3	12	3	4	9	4	3	12	3
2	6	6	8	3	12	3	8	6	6	6	8	3	12	3	8	6	6
1	3	4	6	4	3	4	6	4	3	4	6	4	3	4	6	4	3
0	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
сb	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Observations

- The table is symmetric with respect to the line c = b.
- For given *c*, the sequence is periodic with period p = 4c, and the *i*-th period is symmetric with respect to the point b = 4c(i - 1/2).
- By periodicity, if $b \equiv b_1 \pmod{4c}$, then $n(b,c) = n(b_1,c)$.
- If b,c are co-prime, then n = 3, 4, 6.
- If $b = kb_1$, $c = kc_1$, b_1 and c_1 are co-prime, k > 0, then $n(b,c) = kn(b_1,c_1)$.

					b	ar	nd	С	CC)-K	ori	m	е				
16		3		3		6		3		3		3		3		3	
15		4	6		3			4	3			4		4	3		3
14		6		3		3				6		3		6		3	
13		4	3	4	3	4	3	4	6	4	3	4	3		6	4	3
12		3				3		3				3		3			
11		4	3	4	6	4	3	4	6	4	6		3	4	3	4	3
10		6		3				6		3		6		3			
9		4	6		3	4		4	3		3	4		4	6		3
8		3		3		3		6		3		6		6		3	
7		4	6	4	3	4	3		6	4	6	4	3	4		4	3
6		6				3		3				3		3			
5		4	3	4	6		3	4	3	4		4	3	4	3		6
4		3		3		6		3		3		6		3		3	
3		4	3		3	4		4	3		3	4		4	3		3
2		6		3		3		6		6		3		3		6	
1	3	4	6	4	3	4	6	4	3	4	6	4	3	4	6	4	3
0		3															
сb	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

	b or c even																
16		3		3		6		3		3		3		3		3	
15		4	6		3			4	3			4		4	3		3
14		6		3		3				6		3		6		3	
13		4	3	4	3	4	3	4	6	4	3	4	3		6	4	3
12		3				3		3				3		3			
11		4	3	4	6	4	3	4	6	4	6		3	4	3	4	3
10		6		3				6		3		6		3			
9		4	6		3	4		4	3		3	4		4	6		3
8		3		3		3		6		3		6		6		3	
7		4	6	4	3	4	3		6	4	6	4	3	4		4	3
6		6				3		3				3		3			
5		4	3	4	6		3	4	3	4		4	3	4	3		6
4		3		3		6		3		3		6		3		3	
3		4	3		3	4		4	3		3	4		4	3		3
2		6		3		3		6		6		3		3		6	
1	3	4	6	4	3	4	6	4	3	4	6	4	3	4	6	4	3
0		3															
c b	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

GRAPH-THEORY BASED APPROACH

Basic terms and statements (Deza and Shtogrin, 2003)

- 4-valent polyhedra having 8 triangular faces, while all other faces are quadrangular, are called octahedrites
- a *central circuit* of an octahedrite enters and leaves any given vertex by opposite edges
- octahedrites of octahedral symmetry are duals of tilings on the cube

- any octahedrite is a projection of an alternating link whose components correspond to central circuits
- a *rail-road* is a circuit of quadrangular faces, in which every quadrangle is adjacent to two of its neighbours on opposite edges
- an octahedrite with no rail-road is irreducible

Octahedrites

- Dual of octahedrite
- Alternating link
- Central circuit
- Rail-road

Wrapping

- \rightarrow square tiling
- \rightarrow weaving
- \rightarrow midline of a strand
- \rightarrow adjacent parallel strands
- Irreducible octahedrite $\rightarrow b, c$ are co-prime

Octahedrite 12–1 O_h (red) and dual

Realization by Felicity Wood

The smallest octahedrites ...

after Deza and Shtogrin (2003)

 $6-1 O_h$

8-1[†] D_{4d}

 $12-1 O_h = 12-2 D_{3h}$

9-1[†] D_{3h} 10-1 D_{4h}

11-1 C_{2v}

 $12 - 3^{\dagger} D_{3d} = 12 - 4^{\dagger} D_2$

 $10-2 D_2$

 $12-5 C_2$

 $14-4^{\dagger} C_2$ $14-5 D_2$ † only one central circuit

vertex number isomer count -point group

Wrappings based on octahedrites

6-1 O_h

8-1 D_{4d}

9–1 *D*_{3*h*}

 $10-1 D_{4h}$

10–1 *D*₂

 $11-1 C_{2v}$

Wrappings of the cube

 $6-1 O_h \quad 12-1 O_h \quad 24 O_h \quad 30 O$ $\{b,c\}=\{1,0\} \quad \{1,1\} \quad \{2,0\} \quad \{2,1\}$

Wrappings of the square antiprism where triangular faces are right isosceles triangles

 ${b,c}={1,0} {1,1} {2,0} {2,1}$

The numbers *b*, *c* are related to the short sides of the triangles

Wrapping of an octagon

Octahedrite 14–1 D_{4h}

Wrapping of a two-layer octagon

EXTENSIONS

Symmetrically crinkled structures

Wrapping based on dualising 4-valent polyhedra with quadrangular, pentagonal and hexagonal faces (square, pentagonal, hexagonal antiprisms)

i-hedrites, definition (Deza et *al.* 2003)

4-valent planar graphs with digonal, triangular and quadrangular faces, obeying the constraints

 $f_2 + f_3 = i$, $f_2 = 8 - i$, i = 4, ..., 8are called *i*-hedrites.

Different realizations of wrapping based on dualising an *i*-hedrite

 $f_3 = 0, \qquad f_2 = i = 4$

Convex realization of wrapping based on dualising an *i*-hedrite

 $f_3 = 0, \quad f_2 = i = 4$

Ongoing

- What polyhedra can be wrapped?
- What convex realisations can be achieved?
- Alexandrov Theorem
- From dual octahedrites, can we achieve wrappings of *all* the 257 8-vertex polyhedra + octagon?

... watch this space! ...

Acknowledgements

We thank

Dr G. Károlyi Prof. R. Connelly Mrs M. A. Fowler Dr A. Lengyel Mrs F. Wood

for help.

Research was partially supported by OTKA grant no. K81146.