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Closed baskets




Closed baskets (balls)




WEAVING THE CUBE
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Cube, 45 degrees

Felicity Wood



Skew weaving

Felicity Wood, 2006



GEOMETRICAL APPROACH



Definition

We talk about wrapping, if the physical
weave Is simplified to a double cover,

where the up-down relationship of the

strands has been “flattened out”.



The Coxeter notation



The three classes of cube wrapping

Class | Class Il Class Il
b=0or c=0 b=c b#c,b#0,c#0






Tiling of the faces of the cube
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Properties of strands

The midline of a strand Is a geodesic on
the surface of the cube.

Since b and c are positive integers, the
midlines form closed geodesics (loops).

If b and ¢ are co-prime then all loops are
congruent.

For any given pair b, c, the lengths of all
loops are equal.



Oneloopfor b=3,c=1




Questions for given b, c

« How many strands are there?

 How large a torsion (twist) does a
strand have? (What is the linking
number of the two boundary lines of a

strand?)

 \What sort of knot does a strand
have?
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Observations

The table is symmetric with respect to the

Ine c =D.

—0r given c, the sequence Is periodic with
period p = 4c, and the I-th period Is

symmetric with respect to the point
b =4c(i — 1/2).

By periodicity, if b = b, (mod 4c), then

n(
I

n,c) = n(b,,C).
0,C are co-prime, then n = 3, 4, 6.

If

0 = kb,, ¢ = ke, , b, and c, are co-prime,

k>0, then n(b,c) = kn(b,,c,).



-prime

b and c co

3

3

3

6

11 12 13 14 15 16

10

16
15
14
13
12
11
10

cbh




b Oor C even
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Whyisn=3,4,67?

(1)b-cis even (2) D —C IS odd

e s ~
Vri —L
. , -

’l' i
Face centre coincides with a Face centre coincides with the
a vertex of the tessellation centre of a small square




GRAPH-THEORY BASED
APPROACH



Basic terms and statements
(Deza and Shtogrin, 2003)

« 4-valent polyhedra having 8 triangular faces,
while all other faces are quadrangular, are
called octahedrites

e a central circuit of an octahedrite enters and
leaves any given vertex by opposite edges

e octahedrites of octahedral symmetry are
duals of tilings on the cube



e any octahedrite Is a projection of an
alternating link whose components
correspond to central circuits

 a rail-road Is a circuit of quadrangular faces,
In which every quadrangle is adjacent to two
of its neighbours on opposite edges

e an octahedrite with no rail-road iIs irreducible



Octahedrites  Wrapping

Dual of octahedrite = — square tiling
Alternating link — weaving

Central circuit — midline of a strand
Rail-road — adjacent parallel strands
Irreducible octahedrite — b,c are co-prime



Octahedrite 12- 1 O, (red) and dual

Realization by Felicity Wood



The smallest octahedrites ...
after Deza and Shtogrin (2003)
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6-1 O, 8-17 Dy 9-11 Dy, 10-1 Dy, 10-2 Dy 11-1 Cl,,

PO P OO

12-1 Oy, 12-2 D3y, 12-3T Dy 12-47 D, 12-5 (5 13-1 Oy

SOPOOP

13-21 ¢, 14-1 Dy, 14-2 Dy 14-3 Day 14-47 O, 14-5 D

\\ T only one central circuit
vertex number —~isomer count point group




Wrappings based on octahedrites

6' 1 Oh 8' 1 D4d 9' 1 D3h

10-1 D, 10-1 D, 11-1C,,




Wrappings of the cube

6-10, 12-10, 24 0, 300

{b,c}={1,0} {1,1} {2,0} {2,1}



Wrappings of the square antiprism
where triangular faces are right isosceles triangles

{b,c}={1,0} {1,1} {2,0} {2,1}

The numbers b, c are related to the short sides of the triangles



Wrapping of an octagon

Octahedrite 14-1 D, Its dual Wrapping of
a two-layer
octagon



EXTENSIONS



Symmetrically crinkled structures

Wrapping based on dualising 4-valent polyhedra with
guadrangular, pentagonal and hexagonal faces
(square, pentagonal, hexagonal antiprisms)



I-hedrites, definition
(Deza et al. 2003)

4-valent planar graphs with digonal,
triangular and quadrangular faces,
obeying the constraints

f,+f;=1, £,=8-1, 1=4,..,8
are called i-hedrites.



Different realizations of wrapping
based on dualising an I-hedrite




Convex realization of wrapping
based on dualising an I-hedrite




Ongoing

What polyhedra can be wrapped?

What convex realisations can be achieved?
Alexandrov Theorem

From dual octahedrites, can we

achieve wrappings of all the

257 8-vertex polyhedra + octagon?

... watch this space! ...
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