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1. Introduction

A cubic graph is a simple graph in which each vertex is adjacent to three othervertices. Cu-
bic graphs have since long received much attention from both mathematicians and chemists.
In chemistry, cubic graphs can be used to model carbon networks, sincecarbon often
binds with three C atoms. This makes lists of cubic graphs interesting as lists of possible
molecules that can be studied for their chemical properties. Examples of this are the famous
fullerenes [1] and cyclopolyenes [2]. For several important open conjectures in mathemat-
ics, it can be proven that if they are wrong, the smallest counterexample is acubic graph.
This makes lists of cubic graphs interesting as a possible source for counterexamples.

For these reasons constructing lists of cubic graphs has been a longstanding goal for
mathematicians and chemists. The first complete lists date back to the end of the 19th
century, when de Vries published a list of all cubic (connected) graphson up to 10 vertices
[3, 4].

The next step, and the first one using a computer, was taken by Balaban in1966/67
when he generated all cubic graphs on up to 12 vertices [2].

Even after Balaban’s work – which was obviously not known to many mathematicians
– still manual approaches were performed [5, 6] that were only able to confirm de Vries’
results, but did not go as far as Balaban’s computer enumeration.

Starting with Balaban’s work, faster and faster algorithms were proposedto generate
complete lists of cubic graphs so that – of course also due to the improvement of computers
– now [7] hundreds of thousands of non-isomorphic cubic graphs canbe generated per
second. As the lists are intended for evaluating the graphs and testing conjectures on them,
a further improvement does not seem to be useful: one can generate muchlarger lists than
one can reasonably store and practically each test that is performed on the lists takes longer
than the generation.

The sequence of papers of algorithms also show some other development: while in the
beginning the emphasis was on the numbers and the algorithms were hardly or not at all
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Table 1. The number of connected cubic graphs on a given number of vertices as
determined by Robinson and Wormald [8]

Vertices Graphs

4 1
6 2
8 5

10 19
12 85
14 509
16 4 060
18 41 301
20 510 489
22 7 319 447
24 117 940 535
26 2 094 480 864
28 40 497 138 011
30 845 480 228 069
32 18 941 522 184 590
34 453 090 162 062 723
36 11 523 392 072 541 432
38 310 467 244 165 539 782
40 8 832 736 318 937 756 165

described, later the algorithms were described in more and more detail and also the running
times were given in a more exact way.

2. The Manual Approach

Neither for the first computational approach nor for the first manual approach to gener-
ate cubic graphs, cubic graphs as mathematical structures were the goal.

In the 19th century de Vries was interested in geometrical structures knownasconfig-
urations, but these special configurations are in fact equivalent to cubic graphs. De Vries
investigated plane configurations in which each point is the intersection of twolines and
each line contains three points. In Figure 1 the relation between plane configurations and
cubic graphs is shown: we can interpret the lines as the vertices of the graph, and the points
as the edges of the graph.

For his construction de Vries applied a set of three operations which weremore than
100 years later also the base of the fastest computer algorithm. He recursively applied these
operations to the set of plane configurations he already had generated,starting with the
plane configuration shown in Figure 1 on the left. Though he was working with geometric
structures, he interpreted them in a purely combinatorial way – that is: he described which
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Figure 1. The relation between a plane configuration (left) and a cubic graph (right).

edges must intersect which other edges without discussing the question whether this is
geometrically possible. The operations that were used by de Vries are the following:

1. Given two pointscd ande f that do not lie on the same line. Then two new lines –a
andb – are added that cross in a new pointab.

On the linec, respectivelyd, the pointcd is replaced by the pointac, respectivelyad,
and on the linee, respectivelyf , the pointe f is replaced by the pointbe, respectively
b f . This operation is shown in Figure 2 (a).

2. Given a linea. The pointsag, respectivelyah, are replaced by the pointsac andcg,
respectivelyad anddh. Finally the pointcd is added to the plane configuration, so
that each line contains three points. This operation is shown in Figure 2 (b).

3. Given a pointbi. Four new lines (a, c, d andg) with five new points (ac, ad, cd, cg
anddg) are added to the plane configuration, while at the same time, the pointbi is
replaced byabonb and bygi on i. This operation is shown in Figure 2 (c).

In Figure 3 the graph equivalents of the de Vries operations are given.
Using his three operations, de Vries manually succeeded in constructing allplane con-

figurations with up to 10 lines. He found 1 configuration with 4 lines (shown onthe left in
Figure 1), 2 configurations with 6 lines, 5 configurations with 8 lines and 18 configurations
with 10 lines. These are the correct numbers, except for the last number, as can be seen in
Table 1: there are 19 graphs with 10 vertices. In the French version of his article, de Vries
corrects this mistake and gives the nineteenth configuration. The missing configuration is
shown in Figure 4. Using de Vries’ operations, this configuration can onlybe obtained by
applying the first operation to the points 34 and 78 in the disconnected plane configura-
tion in Figure 5. He originally only considered the connected plane configurations, which
explains why he initially missed this nineteenth configuration.

De Vries’ results were manually confirmed in a note by Bussemaker and Seidel in 1968
[5] and by an article by Imrich in 1971 [6]. We could not obtain the note by Bussemaker and
Seidel, so we cannot report on their methods. In his article, Imrich also mentions computer
work by Baron done at the Technische Hochschule Wien in 1966, whereall cubic graphs
on 10 vertices were generated. Based on this research, Imrich posed the question whether
the graphs can also beeasilydetermined by hand and said that based on the structure of the
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Figure 2. The three operations used by de Vries.

19 graphs found by Baron a decomposition into classes seems useful. Imrich splitted the
generation into cases and generated the graphs without triangles, with onlyone triangle, two
disjoint triangles, two disjoint quadrangles with a diagonal andother cases. Inside the cases
he used some arguments to restrict the number of connections that had to be evaluated, but
essentially went through all possible connections. He also did not write howhe detected
isomorphisms and only wrote, e.g., about the 6 graphs without triangles:“We omit to show
that these 6 graphs are pairwise non-isomorphic.”

Cubic graphs with 12 vertices formed the next step. In this case, however, there are
already 85 graphs. This number of graphs is too large to perform all the calculations man-
ually. Especially avoiding isomorphic copies becomes much more difficult. Therefore the
next steps in the generation of cubic graphs could only be made with the help of computers.

3. Computer Era

1966/67: Balaban: 10/12 Vertices

The first documented computer-assisted generation of cubic graphs wasby Balaban in
1966/67. In [6] Imrich reported about a computer search by Baron in 1966, but we could
not find any documentation of this. Balaban generated all cubic graphs onup to 10 vertices
[2], and later also added the cubic graphs on 12 vertices. Balaban was not studying graphs,
but he was looking for all the valence-isomers of cyclopolyenes C2pH2p. He noted that the
case where there are no double bonds, and each C atom is bonded with 3 other C atoms, is
equivalent to the problem of the generation of cubic graphs. He also noted that this problem
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Figure 3. The three operations used by de Vries translated to a graph context.
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Figure 4. The plane configuration which was missing in the original paper byde Vries.
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Figure 5. The only disconnected 3-regular plane configuration with 8 lines.
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is not yet solved in mathematics. To generate all cubic graphs, Balaban used several brute-
force techniques. He started with a cycle containing the 2p vertices and then made the
remaining connections, but also connected vertices and chains of vertices to each other.
The details of these methods are not given. The detection of isomorphic copies was assisted
by looking at the number of cycles of length 3, 4 and 5 of each graph, butthe exact method
of isomorphism rejection is also not described.

1974: Petrenjuk and Petrenjuk: 12 Vertices

In 1974 Petrenjuk and Petrenjuk have generated all cubic graphs on 12vertices again
[9]. Unfortunately their paper (in Russian) is hard to get, so we can not report on their
methods. We only know of their work as it is cited in [10].

1976: Bussemaker,̌Cobeljić, Cvetković, Seidel: 14 Vertices

In 1976, Bussemaker,̌Cobeljíc, Cvetkovíc and Seidel released a catalog of all cubic
graphs on up to 14 vertices [11]. They listed for each graph the structure, the characteristic
polynomial, the eigenvalues, the number of cycles for each possible length,the diameter,
the connectivity, the planarity, the size of the automorphism group and a picture of the
graph. They also mentioned how some other properties can easily be deduced from the
given properties, such as the hamiltonicity, the girth and the chromatic number.The graphs
were generated using a program developed by Bussemaker. For the details they refer to a
separate technical report which unfortunately never appeared. They did mention how the
program was tested: the number of graphs on 12 vertices was independently calculated
by Čobeljíc using a heuristic hand-computer search. Furthermore they also calculated the
number of labelled cubic graphs directly and compared the results to the unlabelled counts
by using the orders of the automorphism groups. They also point out several incorrect
numbers in older results and identify the errors that were made. In [12] they also compared
their own numbers to those of Faradžev.

The labellings of the graphs published suggest that they also used the canonical form
later used by Brinkmann in [13, 14] and most likely also Faradžev in [10], but this is not
described in the article.

1976: Faraďzev: 18 Vertices

In 1976 Faraďzev published the numbers of cubic graphs on up to 18 vertices [10].
Together with a paper by Read [15], his paper is considered the foundation of the method
of orderly generation. The paper does not describe the algorithm for the construction of
cubic graphs in detail, but uses the results on cubic graphs and some othergraph classes as
an example. The main focus lies on describing a very abstract meta-algorithmthat became
later known as orderly generation.

Besides connected cubic graphs, Faradžev also gives lists of connected regular graphs
of degree 4, 5, and 6, connected bipartite regular graphs of degree 3,4, and 5 and numbers
of 3-vertex-connected graphs. About the programs the article only says that“the above
described method was applied to the solution of the constructive enumerationproblem for
some classes of graphs”.
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Figure 6. From left to right an example of an ear of type 0, respectively of type 1 and of
type 2. All these ears have length 3.

It is not clear in how far the generator for cubic graphs coincides with theone for, e.g.,
4-regular graphs and in how far the generators were optimized for the specific graph classes.
It is also not said how exactly the abstract conditions were implemented. It seems likely
that he uses acanonical formlater also used for theminibaum-program, but that is not clear
from the article.

In the end Faraďzev also says for which values he could compare his results with previ-
ously known results – this is important information to judge how well tested the programs
were.

1986: McKay and Royle: 20 Vertices

Ten years later, in 1986, McKay and Royle raised the bar once again by generating all
cubic graphs on 20 vertices [16]. Though this article focusses on the generation of cubic
graphs and also describes the details of the algorithm, its importance is – just likein the case
of Faraďzev’s algorithm – also rooted in the fact that it introduced a new meta-algorithm for
isomorphism rejection. This method – known as the “canonical construction path method”
was ten years later published in a more abstract way as a general method forisomorph-free
structure generation [17]. For each graphG that arises during the generation process, an
(up to isomorphism) unique reduction operation giving a parentp(G) is defined andG is
accepted if and only if it is generated by the extension operation that is the inverse of the
unique reduction operation. Furthermore it is guaranteed that for each parent graph no two
extension operations that are equivalent under the automorphism groupare applied.

McKay and Royle started from the 2-regular graphs and the disconnected graphs with
3- or 2-regular components such that at least one component is 2-regular. In a graph with
vertex degrees 2 and 3, an ear of lengthk is a sequencev0,v1, . . . ,vk such thatvi−1 andvi are
adjacent (for 1≤ i ≤ k), v1, . . . ,vk−1 have degree 2 andv0 andvk have degree 3, and thevi

are distinct, except possiblyv0 = vk. If v0 andvk are adjacent the ear is of type 0, ifv0 = vk

the ear is of type 2, and in all other cases the ear is of type 1. Examples of these ears are
shown in Figure 6. The internal vertices of an ear arev1, . . . ,vk−1 if v0 6= vk, and all vertices
otherwise.

To construct all cubic graphs they added ears to the start graphs and intermediate graphs
as long as these graphs had vertices of degree 2. For each graphG that is to be extended,
only extensions are applied that are not equivalent under the automorphism group ofG –
that is: where the endpoints of the ears to be attached are not mapped onto each other by
an automorphism. In case the graph contained exactly three vertices of degree 2, they also
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added a single vertex and connected it to the three vertices of degree 2.
They defined a vertex invariant they callquality as the number of vertices at distance 2

plus 100 times the number of vertices at distance 3. Furthermore they used a canonical la-
belling [18, 19]– that is a way to assign labels to vertices that is unique up to automorphisms
of the graph.

The parent of a graph was defined as follows:

• the start graphs do not have a parent;

• for a cubic graph, the parent is the graph obtained by deleting the vertex withthe
lowest quality and if this is not unique, among them one with the lowest canonical
label;

• for all other intermediate graphs, the parent is the graph obtained by selecting from
the set of ears of lowest type, the subset of those of greatest length and then removing
the internal vertices of the ear from that subset which contains the vertexwith the
lowest canonical label.

This method already contains all ingredients that make later algorithms using the canon-
ical construction path method so efficient.

1992: Brinkmann: 24 Vertices

The programminibaumby Brinkmann [13, 14] uses an orderly algorithm like described
by Faraďzev. The algorithm is tailored for cubic graphs and uses some datastructure exploit-
ing similarities of graphs that are generated to speed up isomorphism rejection. In 1992 the
program was only used for all cubic graphs on up to 24 vertices, but in the meantime – due
to faster computers and large clusters – it was used for up to 32 vertices.

For each graphG= (V,E) with V = {1, . . . , |V|}, the adjacency matrix(ai, j)1≤i, j,≤|V| is
given byai, j = 1 if {i, j} ∈ E andai, j = 0 otherwise. One can concatenate the rows of this
0-1-matrix to form one long binary representation of a natural number. The result is called
the order number of the graph. The permutation of vertex labels that leads tothe largest
order number is called thecanonical labellingof the graph and a graph with maximum
order number is called a maximum representative.

For each isomorphism class of cubic graphs,minibaumconstructs only the unique max-
imum representative. These graphs are constructed by inserting the edges in increasing lex-
icographical order – so the first edges inserted are always{1,2},{1,3},{1,4} as they are
present in each maximum cubic graph and are lexicographically smallest. If amaximum
graph is constructed by inserting the edges in lexicographical order, then all intermediate
graphs are also maximum (see [14]) which leads to the following algorithm forgenerating
all cubic graphs with vertex setV = {1, . . . ,n}, which is an orderly algorithm in the sense
of Read and Faradžev:

• Start with the graph(V,{{1,2},{1,3},{1,4}}).

• Recursively add edges in lexicographical order. Each edge insertedis adjacent to the
smallest vertex that still has a degree smaller than 3.
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• After an edge is inserted, check whether the graph is a maximum representative by
trying to find a labelling that leads to a larger representation. If a larger representation
is found: reject the graph, otherwise proceed.

• If a graph is found to be maximum and all vertices have degree 3: output thegraph.

It can easily be proven that the first edge inserted that closes a cycle determines the girth
of a graph. If later an edge is inserted that lies on a smaller cycle, the graphis not maximum.
This observation avoids the construction of some graphs that are afterwards found to be not
maximum.

The main technique that speeds up the program (and is also responsible for the name of
the program) can be understood as follows:

For a given graphG in the construction process that is not yet 3-regular, all graphs
constructed fromG containG as a subgraph. During the test whetherG is maximum, it
may be detected that one gets smaller results when trying to assign label 1 to vertex x
already before assigning labels to a vertex with degree less than 3. If this isthe case, the
same will happen for all descendants ofG, so one can in fact store the information that it is
useless to assign label 1 to vertexx for all descendants and avoid these computations.

This idea can be carried further: one can store all partial assignments oflabels to ver-
tices of degree 3 that do not yet lead to smaller representations and start for the descendants
from the partial assignments instead of from scratch. This information has tobe updated
in each step and therefore an efficient datastructure has to be used to store the information.
The programminibaumuses a tree (German: Baum) of these partial representations.

As updating the datastructure is more expensive than just testing, this tree is only built
up to a certain depth in the recursion where the cost is smaller than the benefit.This depth
had to be determined by tests.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz,minibaumgen-
erates about 81.500 non-isomorphic cubic graphs on 26 vertices per second.

An advantage of the simple edge-by-edge insertion strategy is that each graph con-
structed is a subgraph of all its descendants. So all graph properties that are inherited by
the descendants can be – more or less – efficiently included in the generationprocess. This
way, e.g., graphs without small cycles, or without cycles of a given length(e.g., without
odd lengths – that is: bipartite graphs) can be generated. Unfortunately for very restricted
classes of cubic graphs (e.g., graphs with large girth), isomorphism rejection is not the prob-
lem any more, but most partial graphs cannot be completed, what then leads to very small
generation rates.

1998: Meringer: 24 Vertices

In 1998 Meringer [20] used the same basic orderly algorithm as Brinkmannin [13,
14] for his programgenregbut optimised the test whether a graph is maximum so that it
also works efficiently for regular graphs with larger degree, while the method in [14] gets
inefficient for larger degrees.

Some of the key new ideas used come from [21] where graphs with a givendegree se-
quence are generated, but unlike Meringer’s program, Grund’s program was not optimized
for regular graphs.
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Meringer only tested the regular graphs that were to be output for being maximum and
used the concept ofsemicanonicity, which is a necessary, but not sufficient criterion for
a graph to be maximum for the intermediate graphs. This criterion is less selective, but
much faster to test. It only tests whether certain subsets of the whole permutation group can
produce a graph with a larger representation. These subsets are defined recursively. First all
permutations are chosen that fix vertex 1, among those only those that fix theedges adjacent
to 1, among those only those that fix vertex 2, etc.

The result of this faster but less restrictive criterion can be that an intermediate graph
that is not maximum could produce a large number of descendants that will allbe tested
and rejected for being not maximum. This problem is solved bylearning from elements
that are not maximum: if a regular graph is detected to be not maximum, the permutation
giving a smaller representation often gives a smaller representation already when applied
to a subgraph. Ife denotes the lexicographically largest edge that occurs in the subgraph
or the image of the subgraph, the smaller labeling will be possible as long as all edges up
to e are present. So Meringer’s algorithm backtracks until the edgee is removed, as graphs
containing all edges up toewill not be maximum anyway.

These two key ideas are combined with the use of a Sims chain of nested subgroups
of the whole permutation group allowing to compute a set of generators insteadof going
through all automorphisms when trying to find smaller labellings.

The result is a program that – though not designed especially for cubic graphs, but for
regular graphs of given degree – showed a good performance for cubic graphs and is the
fastest program for degrees 4 or larger where it could extend some listsof graphs with
or without restricted girth. Likeminibaumalsogenregoffers the option to only generate
graphs with restricted girth or bipartite graphs.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz,genreggenerates
about 50.100 non-isomorphic cubic graphs on 26 vertices per second.

2000: Sanjmyatav and McKay

In 2000 Sanjmyatav and McKay [22] developed new generation algorithms for various
classes of cubic graphs. The construction operations of their algorithm togenerate all cubic
graphs are based on the operations from de Vries. Their two basic operations are shown
in Figure 3(a) and Figure 3(b) and are called theedgeandtriangle operation, respectively.
The inverse of a construction operation is called a reduction. Cubic graphs which cannot
be reduced to a smaller cubic graph by a triangle or edge reduction were called irreducible
graphs. By definition each cubic graph can be generated from an irreducible graph by
recursively applying edge and/or triangle operations.

They showed that all irreducible graphs can be obtained by recursively applying oper-
ation (c) from Figure 3 (where the verticesb andi may be the same) to cubic multigraphs
with loops. As only a tiny fraction of the cubic graphs are irreducible (see Table 2), they
used a simple straightforward method to generate irreducible graphs in advance. They pro-
duced a list of irreducible graphs on up to 26 vertices which were then used as a starting
point for the generation of all cubic graphs on up to 26 vertices.

For generating the remaining cubic graphs from these irreducible graphs, they used the
canonical construction path method to avoid the generation of isomorphic copies. This
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means that they computed orbits of possible extensions (orbits of pairs of edges to apply
operation (a) and orbits of vertices to apply operation (b)) and used a canonicity criterion
for the unique reduction of a graph that first uses some easily computable invariants and
falls back to a canonical labeling [18] in case this did not give a unique reduction to de-
cide whether the last operation is canonical in the sense of the canonical construction path
method.

Table 2. Number of irreducible graphs vs. number of cubic graphs

|V(G)| # irreducible graphs # cubic graphs

4 1 1
6 0 2
8 1 5
10 1 19
12 1 85
14 3 509
16 2 4 060
18 5 41 301
20 4 510 489
22 9 7 319 447
24 11 117 940 535
26 16 2 094 480 864
28 32 40 497 138 011
30 37 845 480 228 069
32 73 18 941 522 184 590

They also designed algorithms to generate more restricted classes of cubic graphs such
as bipartite cubic graphs or cubic graphs with girth at least 4 or 5. For mostof these classes
they did this in two ways. In one approach they added a filter and look-aheads for the
restricted graph class to the generation algorithm for all cubic graphs. Inthe other approach
they developed a specialized construction algorithm which constructs cubicgraphs from the
special class in such a way that all intermediate graphs are also part of thespecial class. In
most of these cases the filter approach was the more efficient one.

Unfortunately the programs were never released and we could not compare them on
modern machines. The times reported in the thesis are that the generator applied to generate
all cubic graphs is approximately 2.7 times faster thanminibaumfor 20 vertices and about
1.7 times faster for 24 vertices.

This ratio may differ on modern machines as different algorithms may react differently
to faster or slower memory. They give, e.g., the same time (52 seconds) for the generation
of cubic graphs with 20 vertices byminibaumandgenreg, while on an Intel(R) Core(TM)2
Quad CPU Q8200 with 2.0 Ghz the times differ by more than 20%: 7 seconds forminibaum
and 9 seconds forgenreg.
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2011: Brinkmann, Goedgebeur, McKay: 32 Vertices

In 2011 Brinkmann, Goedgebeur and McKay [7] developed a new program called
snarkhunterwhich allowed to generate all cubic graphs up to 32 vertices. The construc-
tion operations are based on the operations from de Vries and Sanjmyatav/McKay and the
edge and triangle operations are again applied to generate cubic graphs.Nevertheless there
were also several points where the algorithms differ. The new algorithm used some special
optimisations to define the canonical reverse operations and generated irreducible graphs
(also called prime graphs) in a different way. It was shown that every prime graph can be
obtained by recursively applying the operations from Figure 7 toK4 in such a way that all
intermediate graphs are also prime. Both for the generation of prime graphs and for the
generation of the remaining cubic graphs the canonical construction path method was used
to make sure no isomorphic copies are output.

The main new idea leading to a speedup was to handle graphs with isolated triangles
in another way. Areducible triangleis a triangle which can be reduced by a triangle re-
duction. As most cubic graphs contain at least one reducible triangle (seeTable 3), special
attention was paid to generating cubic graphs with reducible triangles. As a rule used for
the canonical construction path method, graphs with reducible triangles mustbe constructed
by expanding vertices to triangles. The new algorithmbundledthese triangle operations.
For the reduction of graphs with reducible triangles, the idea was to reduceall reducible
triangles at the same time. In the construction, the bundled triangle operation blows up all
vertices in a setS⊆ V(G) of a graphG to triangles at the same time in such a way that
all reducible triangles in the graph obtained by applying this bundled triangle operation are
created in this last operation. This means thatS must contain at least one vertex of every
reducible triangle inG. Orbits of vertex sets to be extended must be computed to avoid
isomorphic copies – but this is done on much fewer and much smaller graphs. Asmall
problem is formed by a square attached to two triangles at opposite edges ofthe square, as
these triangles can be reduced separately, but not in parallel. Graphs with such a configu-
ration – which does not occur often – come from graphs with a square thathas a diagonal.
The ratio of these graphs is very small and this case was handled by separate rules.

In order to make sure that only one graph is output for each isomorphism class of cubic
graphs, a canonicity check is performed and non-canonical graphs are rejected. This can be
very expensive in general. However since the graph obtained by applying the bundled trian-
gle reduction to a cubic graph with reducible triangles is uniquely determined, no canonicity
check is required for cubic graphs with reducible triangles and no non-canonical graphs are
generated by the bundled triangle operation. This significantly sped up the algorithm.

The bundled triangle operation also helps to compute the automorphism group of the
extended graph, which is needed in case the resulting graph has not yetreached the desired
number of vertices. In case of a trivial group of the graph to be extended, it can even be
concluded that the extended graph also has a trivial group.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz,snarkhunter
generates about 410.300 non-isomorphic cubic graphs on 26 vertices per second. Based
on the ratios withgenregandminibaumgiven in [22] this is considerably faster than the
algorithm described there.

The algorithm can also be restricted to generate cubic graphs with girth at least 4 or 5
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Table 3. Counts of all 2 094 480 864 connected cubic graphs with 26 vertices
according to the number of reducible triangles they have

# reducible
triangles

# graphs

0 497 010 000
1 774 885 044
2 540 977 972
3 218 274 256
4 54 459 966
5 8 183 373
6 666 137
7 23 837
8 279

efficiently by using look-aheads. Similar look-aheads could also be used togenerate cubic
graphs with larger lower bounds on the girth, but these look-aheads would be a lot less
efficient. For generating cubic graphs with large girth, the fastest method is that of McKay,
Myrvold and Nadon [23].

The main reason for the development ofsnarkhunterwas the possibility to restrict the
generation to snarks – that is: to cyclically 4-connected cubic graphs with chromatic index
4 – in a way that is more efficient than filtering all graphs. Based on the lists ofsnarks
generated, 8 published conjectures could be refuted [24].

4. Counting the Graphs

All methods described in the previous paragraphs were constructive, i.e., all the graphs
were explicitly formed and could be output and used for tests. In mathematics“enumer-
ation” is also used for determining only the number of structures, but not the structures
themselves. Enumerating cubic graphs in this sense, one can go much further than would
be possible by constructing all the graphs. This was done by Robinson and Wormald in
1983 [8]. They used a counting technique which allowed them to calculate thenumber of
cubic graphs on up to 40 vertices. Even at that time their program needed about 150 hours
to calculate these numbers.

5. Restrictions and Generalisations

5.1. Restricted Classes of Cubic Graphs

As already mentioned before, several restricted classes of cubic graphs are also of math-
ematical and chemical interest. Unlike, e.g., bipartite cubic graphs or cubic graphs with
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Figure 7. The three operations used by Brinkmann, Goedgebeur and McKay to construct
prime graphs.

girth 4 or 5, some of these classes can not efficiently be generated by modifying the gener-
ators for all graphs. We will not go into details of generation algorithms for these restricted
classes, but just mention some of them.

As Balaban points out in [25], planar cubic graphs are, e.g., more likely to correspond
to actual molecules and already in 1972/1976 he gave lists of small cubic planar graphs
[26, 25] by filtering the cubic graphs he had generated. The fastest available algorithm at
the moment also goes back to a construction method from the 19th century [27]. Together
with an efficient algorithm for isomorphism rejection it is implemented in the program
plantri [28]. On an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz,plantri needs
about 1.85 seconds to generate all cubic polyhedra (3-connected cubic planar graphs) on 26
vertices – which are about 1.300.000 polyhedra on 26 vertices per second.

Things get more complicated when the class of cubic polyhedra is further restricted.
After the discovery of the Fullerenes (that is: carbon cages with the structure of cubic
polyhedra with all faces of size 5 or 6) in 1985 [1], generators for combinatorial fullerenes
were needed and after a series of incomplete algorithms [29] in 1997 the first complete
and efficient algorithm –fullgen – was published [30] and later generalized for arbitrary
face sizes in [31]. The fastest fullerene generator nowadays isbuckygendescribed in [32].
On an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz it generates about 38.000 non-
isomorphic fullerenes on 100 vertices per second.

In mathematics there are several inductive definitions known for severalclasses of cu-
bic graphs, i.e., 2-connected cubic graphs, planar cubic graphs, 3-connected planar cubic
graphs, see [33] or the references in [28]. These inductive definitions give rise to generation
programs for specialized classes (included in the program described in [28]), but we won’t
describe the details here.
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Figure 8. The only connected cubic multigraph with an edge with multiplicity 3.

5.2. Generalised Cubic Graphs

Besides restricted classes of cubic graphs, also generalisations were considered. Up to
this point, we have only been discussing results for connected simple graphs. A canonical
generalisation is to also allow multigraphs, graphs with loops and graphs with semi-edges,
or any combination of these.

From a chemical viewpoint, multigraphs are a very natural generalisation to consider,
since atoms can form double bonds. And it was also Balaban to do the first computer
enumerations: In 1966 he enumerated all cubic multigraphs on up to 10 vertices and in
1967 he also added the cubic multigraphs on 12 vertices. He was interested inthese graphs
since they serve as models for the cyclopolyenes C2pH2p that contain double bonds.

A cubic multigraph can have edges with multiplicity 1, 2 or 3. There is only one con-
nected cubic multigraph with an edge with multiplicity 3. This is the theta graph (shown
in Figure 8). All other cubic multigraphs can only contain edges with multiplicity 1 and 2.
Balaban generated these graphs based on the number of vertices and thenumber of edges
with multiplicity 2.

For the case with 2p vertices,p edges with multiplicity 1 andp edges with multiplicity
2, he noted that there is only one multigraph. This is the cycle on 2p vertices where the
edges alternatingly have multiplicity 1 and 2.

For the case with 2p vertices,p+ 2 edges with multiplicity 1 andp− 1 edges with
multiplicity 2, he divided the graphs into three categories and, based on the number of
vertices, gave closed formulas for the number of graphs in each of thesecategories. The
three categories are:

A. The cycles with one chord (see Figure 9 for an example); The number of graphs in this

category is
⌊

p−1
2

⌋

.

B. The cycles with an extra path between two vertices (see Figure 10 for anexample); The

number of graphs in this category is
⌊

p2−2p+4
12

⌋

C. Two cycles connected by a path (see Figure 11 for an example). The number of graphs

in this category is
⌊

p−1
2

⌋⌈

p−1
2

⌉

For the remaining cases, Balaban used the same techniques as for cubic simple graphs,
i.e., all possible ways to connect the vertices were tried.

In 1970 Balaban revisited the generation of cubic multigraphs as part of thegeneration
of general cubic graphs [34, 35, 36]. A general graph is a multigraphthat can also have
loops. To generate all general cubic graphs withn vertices, he applied two operations to the
general cubic graphs onn−2 vertices. These operations are:
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Figure 9. The two multigraphs on 10 vertices with 7 edges of multiplicity 1 and 4 edges of
multiplicity 2, that belong to category A.

Figure 10. The only multigraphs on 10 vertices with 7 edges of multiplicity 1 and 4 edges
of multiplicity 2, that belong to category B.

Figure 11. The four multigraphs on 10 vertices with 7 edges of multiplicity 1 and 4edges
of multiplicity 2, that belong to category C.
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Figure 12. The two operations used by Balaban to generate general cubic graphs.

1. Add two new vertices to any edge(s) or loop(s) and connect them by anew edge (see
top part of Figure 12).

2. Add a new vertex to any edge or loop and connect it by a new edge to another new
vertex to which also a loop is added (see bottom part of Figure 12).

This technique was used to generate all general cubic graphs on up to 12vertices, start-
ing from the two general cubic graphs on two vertices: the theta graph (see Figure 8) and
theK2 with an extra loop incident to each vertex. The cubic multigraphs were then obtained
by taking the general cubic graphs with 0 loops. This technique generatesmany graphs
several times, so the produced list of graphs was afterwards filtered for duplicate graphs.

In 2012 Brinkmann, Pisanski and Van Cleemput developed a generation algorithm for
several generalised classes of cubic graphs [37]. It can generategraphs that can have loops,
semi-edges and multi-edges. A semi-edge is an edge that is incident to only onevertex. The
algorithm can be efficiently restricted to graphs allowing only a subset of these non-simple
edge types.

The problem of generating these generalised graphs is first translated tothe generation
of cubic pregraph primitives. A cubic pregraph primitive is a multigraph with vertices of
degree 1 and 3. The vertices of degree 1 ultimately give rise to loops and/or semi-edges,
depending on the class that is generated. To generate all cubic pregraph primitives on
n vertices, the canonical construction path method is applied again. It uses 4extension
operations and as base graphsK2 , the theta graph and all cubic graphs on up ton vertices.
The 4 operations are depicted in Figure 13.

In order to generate the cubic pregraphs that have loops or semi-edgesfrom these cu-
bic pregraph primitives, a loop is added to each vertex of degree 1, or a vertex of degree
1 together with the adjacent edge is replaced by a semi-edge to the neighbour. In order to
generate the cubic pregraphs that have both – loops and semi-edges – from these cubic pre-
graph primitives, the homomorphism principle [38, 39] is used to avoid isomorphic copies.
For small vertex numbers the numbers obtained coincide with the numbers Balaban already
calculated in 1970. The number of structures for several classes and vertex numbers are
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Figure 13. The four operation used by Brinkmann, Pisanski and Van Cleemput to generate
cubic pregraph primitives.

Figure 14. An occurrence of a loop can be transformed into an edge of multiplicity 2 and
vice versa.

shown in Table 4.
When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz, the programpre-

graphsbased on this approach generates about 78.000 non-isomorphic cubic multigraphs
with loops and semi-edges on 16 vertices per second.

One observation that can be made when looking at the number of cubic pregraphs is
that the numbers in column L, respectively LS, coincide with the numbers in column M,
respectively SM (except forn= 1). This correspondence was already noted and explained
by Balaban. The reason is that each occurrence of a loop can be transformed into an edge of
multiplicity 2 and vice versa (see Figure 14). This is always possible exceptfor the balloon
graph (see Figure 15), which explains the difference forn= 1.



Table 4. The number of structures in each class of cubic pregraphsfor a given number of verticesn. C stands for simple graphs, L
for graphs that have loops, S for graphs that have semi-edges, Mfor multigraphs, LS for graphs that have loops and semi-edges, LM

for multigraphs that have loops (i.e., general graphs), SM for multigraphs that have semi-edges and LSM for all pregraphs

n C L S M LS LM SM LSM

1 0 0 1 0 2 0 1 2
2 0 1 1 1 3 2 3 5
3 0 0 2 0 4 0 4 7
4 1 2 6 2 12 5 12 22
5 0 0 10 0 22 0 22 43
6 2 6 29 6 68 17 68 141
7 0 0 64 0 166 0 166 373
8 5 20 194 20 534 71 534 1 270
9 0 0 531 0 1 589 0 1 589 4 053

10 19 91 1 733 91 5 464 388 5 464 14 671
11 0 0 5 524 0 18 579 0 18 579 52 826
12 85 509 19 430 509 68 320 2 592 68 320 203 289
13 0 0 69 322 0 255 424 0 255 424 795 581
14 509 3 608 262 044 3 608 1 000 852 21 096 1 000 852 3 241 367
15 0 0 1 016 740 0 4 018 156 0 4 018 156 13 504 130
16 4 060 31 856 4 101 318 31 856 16 671 976 204 638 16 671 976 57 904 671
17 0 0 16 996 157 0 70 890 940 0 70 890 940 253 856 990
18 41 301 340 416 72 556 640 340 416 309 439 942 2 317 172 309 439 942 1 139 231 977
19 0 0 317 558 689 0 1 381 815 168 0 1 381 815 168 5 219 113 084
20 510 489 4 269 971 1 424 644 848 4 269 971 6 310 880 471 30 024 276 6310 880 471 24 401 837 085
21 0 0 6 536 588 420 0 29 428 287 639 0 29 428 287 639 116 278 408 069
22 7 319 447 61 133 757 30 647 561 117 61 133 757 140 012 980 007 437469 859 140 012 980 007 564 380 686 932
23 0 0 146 647 344 812 0 0
24 117 940 535 978 098 997 978 098 997 7 067 109 598
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Figure 15. The balloon graph is the only graph in which the loop cannot be transformed
into an edge of multiplicity 2.

Conclusion

The large number of different and increasingly fast approaches to generate cubic graphs
gives a hint about the importance of this class. In the long series of computational ap-
proaches there are always two special ones:

the first approach and the last approach. While the last approach is onlywaiting for the
next algorithm that is even faster, the first approach will always remain the first – and for
cubic simple graphs as well as cubic multigraphs, it will always be the name of Balaban
standing for these approaches.

Not many examples of scientists can be found that not only made important contribu-
tions at young age, but also – with more than 80 years and more than 50 years after their
Ph.D. – still contribute innovative scientific ideas. A.T. Balaban is one of the few. We want
to express our gratitude for the honour to have met this outstanding scientiston several
conferences.
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classes of trivalent graphs.Theoretical Computer Science, 2012.



The History of the Generation of Cubic Graphs 89

[38] R. Grund, A. Kerber, and R. Laue. MOLGEN – ein Computeralgebrasystem f̈ur die
Konstruktion molekularer Graphen.MATCH Commun. Math. Comput. Chem., 27:87–
131, 1992.

[39] G. Brinkmann. Isomorphism rejection in structure generation programs. In P. Hansen,
P.W. Fowler, and M. Zheng, editors,Discrete Mathematical Chemistry, volume 51 of
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pages
25–38. American Mathematical Society, 2000.

MA


