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1. Introduction

A cubic graph is a simple graph in which each vertex is adjacent to threevathieres. Cu-
bic graphs have since long received much attention from both mathematinéhobemists.
In chemistry, cubic graphs can be used to model carbon networks, c@mben often
binds with three C atoms. This makes lists of cubic graphs interesting as listsgibjeo
molecules that can be studied for their chemical properties. Examples ofd¢tifeeamous
fullerenes [1] and cyclopolyenes [2]. For several important opejectures in mathemat-
ics, it can be proven that if they are wrong, the smallest counterexampleuisi@agraph.
This makes lists of cubic graphs interesting as a possible source for pexar®les.

For these reasons constructing lists of cubic graphs has been a lahggtgoal for
mathematicians and chemists. The first complete lists date back to the end of the 19th
century, when de Vries published a list of all cubic (connected) graphgp to 10 vertices
[3, 4].

The next step, and the first one using a computer, was taken by Balal&66/67
when he generated all cubic graphs on up to 12 vertices [2].

Even after Balaban’s work — which was obviously not known to many mattieianas
— still manual approaches were performed [5, 6] that were only ablenfircode Vries’
results, but did not go as far as Balaban’s computer enumeration.

Starting with Balaban'’s work, faster and faster algorithms were propmsgdnerate
complete lists of cubic graphs so that — of course also due to the improvehuemiputers
— now [7] hundreds of thousands of non-isomorphic cubic graphsbeagenerated per
second. As the lists are intended for evaluating the graphs and testingtcoegeon them,
a further improvement does not seem to be useful: one can generatdargetiists than
one can reasonably store and practically each test that is performee lisigtiakes longer
than the generation.

The sequence of papers of algorithms also show some other developrhédatirvthe
beginning the emphasis was on the numbers and the algorithms were haraiyatrati
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Table 1. The number of connected cubic graphs on a given numbeff gertices as
determined by Robinson and Wormald [8]

Vertices Graphs
4 1
6 2
8 5

10 19
12 85
14 509
16 4060
18 41 301
20 510 489
22 7319 447
24 117 940 535
26 2 094 480 864
28 40 497 138 011
30 845 480 228 069
32 18 941 522 184 590
34 453 090 162 062 723

36 11523392 072 541 432
38 310 467 244 165 539 782
40 8832736 318937 756 165

described, later the algorithms were described in more and more detail artdealsinning
times were given in a more exact way.

2. The Manual Approach

Neither for the first computational approach nor for the first manuaicgmb to gener-
ate cubic graphs, cubic graphs as mathematical structures were the goal.

In the 19th century de Vries was interested in geometrical structures kaseanfig-
urations but these special configurations are in fact equivalent to cubidgrape Vries
investigated plane configurations in which each point is the intersection ofine® and
each line contains three points. In Figure 1 the relation between plane wanitgs and
cubic graphs is shown: we can interpret the lines as the vertices of thie, gred the points
as the edges of the graph.

For his construction de Vries applied a set of three operations which were than
100 years later also the base of the fastest computer algorithm. He vetuegiplied these
operations to the set of plane configurations he already had genestgithg with the
plane configuration shown in Figure 1 on the left. Though he was workitiggeometric
structures, he interpreted them in a purely combinatorial way — that is: dueilded which
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24

Figure 1. The relation between a plane configuration (left) and a cubit draght).

edges must intersect which other edges without discussing the questathewltthis is
geometrically possible. The operations that were used by de Vries araltwifg:

1. Given two pointxd andef that do not lie on the same line. Then two new lines —
andb — are added that cross in a new paibt

On the linec, respectivelyd, the pointcd is replaced by the poirac, respectivelyad,
and on the line, respectivelyf, the pointe f is replaced by the poirite, respectively
bf. This operation is shown in Figure 2 (a).

2. Given a linea. The pointsag, respectivelyah, are replaced by the poinés andcg,
respectivelyad anddh. Finally the pointcd is added to the plane configuration, so
that each line contains three points. This operation is shown in Figure 2 (b).

3. Given a poinbi. Four new lines4, c, d andg) with five new points &c, ad, cd, cg
anddg) are added to the plane configuration, while at the same time, thelpdamt
replaced byab onb and bygi oni. This operation is shown in Figure 2 (c).

In Figure 3 the graph equivalents of the de Vries operations are given.

Using his three operations, de Vries manually succeeded in constructpigradl con-
figurations with up to 10 lines. He found 1 configuration with 4 lines (showtherieft in
Figure 1), 2 configurations with 6 lines, 5 configurations with 8 lines andobgurations
with 10 lines. These are the correct numbers, except for the last nuasbesin be seen in
Table 1: there are 19 graphs with 10 vertices. In the French versios afticle, de Vries
corrects this mistake and gives the nineteenth configuration. The missifiguation is
shown in Figure 4. Using de Vries’ operations, this configuration can loalgbtained by
applying the first operation to the points 34 and 78 in the disconnected plarfigura-
tion in Figure 5. He originally only considered the connected plane couafligms, which
explains why he initially missed this nineteenth configuration.

De Vries' results were manually confirmed in a note by Bussemaker and 8ei@68
[5] and by an article by Imrich in 1971 [6]. We could not obtain the note bydemaker and
Seidel, so we cannot report on their methods. In his article, Imrich also merd@nputer
work by Baron done at the Technische Hochschule Wien in 1966, vailecabic graphs
on 10 vertices were generated. Based on this research, Imrich pesgdestion whether
the graphs can also leasilydetermined by hand and said that based on the structure of the
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Figure 2. The three operations used by de Vries.

19 graphs found by Baron a decomposition into classes seems usefulh bplitted the
generation into cases and generated the graphs without triangles, wittmertiyangle, two
disjoint triangles, two disjoint quadrangles with a diagonal aiietr casesinside the cases
he used some arguments to restrict the number of connections that had/aduztesl, but
essentially went through all possible connections. He also did not writeheodetected
isomorphisms and only wrote, e.g., about the 6 graphs without triariylé&somit to show
that these 6 graphs are pairwise non-isomorphic.”

Cubic graphs with 12 vertices formed the next step. In this case, howtbeee are
already 85 graphs. This number of graphs is too large to perform albibalations man-
ually. Especially avoiding isomorphic copies becomes much more difficult.efdrerthe
next steps in the generation of cubic graphs could only be made with thefremputers.

3. Computer Era

1966/67: Balaban: 10/12 Vertices

The first documented computer-assisted generation of cubic graphs/gedaban in
1966/67. In [6] Imrich reported about a computer search by Baron&®,18ut we could
not find any documentation of this. Balaban generated all cubic graping tm10 vertices
[2], and later also added the cubic graphs on 12 vertices. Balabanovaudying graphs,
but he was looking for all the valence-isomers of cyclopolyengsig,. He noted that the
case where there are no double bonds, and each C atom is bonded tigr 8 @toms, is
equivalent to the problem of the generation of cubic graphs. He alsd ttaethis problem
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Figure 3. The three operations used by de Vries translated to a graggxicon

1 2 9 0 6 5
13 23 67 57
S \1B B J 6T\ 5T)
4 8
14 24 49 80 68 58
12 56

90

Figure 4. The plane configuration which was missing in the original papdebjries.

1 2 6 5
3 13 [o3 67\ 274 7
34 78
47 24 68 58
12 56

Figure 5. The only disconnected 3-regular plane configuration with 8.lines

71



72 Gunnar Brinkmann, Jan Goedgebeur and Nico Van Cleemput

is not yet solved in mathematics. To generate all cubic graphs, Balabdisexseral brute-
force techniques. He started with a cycle containing thes@rtices and then made the
remaining connections, but also connected vertices and chains of geidi@ach other.
The details of these methods are not given. The detection of isomorphic eegseassisted
by looking at the number of cycles of length 3, 4 and 5 of each graplthbugxact method
of isomorphism rejection is also not described.

1974: Petrenjuk and Petrenjuk: 12 Vertices

In 1974 Petrenjuk and Petrenjuk have generated all cubic graphs eerti&s again
[9]. Unfortunately their paper (in Russian) is hard to get, so we caneprt on their
methods. We only know of their work as it is cited in [10].

1976: BussemakerCobelji¢, Cvetkovic, Seidel: 14 Vertices

In 1976, Bussemakefobeljic, Cvetkove and Seidel released a catalog of all cubic
graphs on up to 14 vertices [11]. They listed for each graph the stejthe characteristic
polynomial, the eigenvalues, the number of cycles for each possible lehgtdjameter,
the connectivity, the planarity, the size of the automorphism group and aeicfithe
graph. They also mentioned how some other properties can easily beedefdom the
given properties, such as the hamiltonicity, the girth and the chromatic nufrtieegraphs
were generated using a program developed by Bussemaker. Fortdliie teey refer to a
separate technical report which unfortunately never appeared; ditienention how the
program was tested: the number of graphs on 12 vertices was indeplgncidculated
by éobeljif: using a heuristic hand-computer search. Furthermore they also caictiiate
number of labelled cubic graphs directly and compared the results to thesliathbounts
by using the orders of the automorphism groups. They also point oatadencorrect
numbers in older results and identify the errors that were made. In [12hthe compared
their own numbers to those of Favay.

The labellings of the graphs published suggest that they also used thaicarform
later used by Brinkmann in [13, 14] and most likely also Faedin [10], but this is not
described in the article.

1976: Faradzev: 18 Vertices

In 1976 Faradlev published the numbers of cubic graphs on up to 18 vertices [10].
Together with a paper by Read [15], his paper is considered the foandd the method
of orderly generation. The paper does not describe the algorithm docahstruction of
cubic graphs in detail, but uses the results on cubic graphs and somg@perclasses as
an example. The main focus lies on describing a very abstract meta-algthéhimecame
later known as orderly generation.

Besides connected cubic graphs, Faeadalso gives lists of connected regular graphs
of degree 4, 5, and 6, connected bipartite regular graphs of degrean® 5 and numbers
of 3-vertex-connected graphs. About the programs the article only thay“the above
described method was applied to the solution of the constructive enumepadiolem for
some classes of graphs”
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Figure 6. From left to right an example of an ear of type 0, respectivielype 1 and of
type 2. All these ears have length 3.

It is not clear in how far the generator for cubic graphs coincides witlotieefor, e.g.,
4-regular graphs and in how far the generators were optimized for godfisgraph classes.
It is also not said how exactly the abstract conditions were implementedertisskkely
that he uses eanonical formater also used for theinibaumprogram, but that is not clear
from the article.

In the end Faratkv also says for which values he could compare his results with previ-
ously known results — this is important information to judge how well tested thgranus
were.

1986: McKay and Royle: 20 Vertices

Ten years later, in 1986, McKay and Royle raised the bar once agaiar®rafing all
cubic graphs on 20 vertices [16]. Though this article focusses on tierg@on of cubic
graphs and also describes the details of the algorithm, its importance is — justthikecase
of Faradev’s algorithm — also rooted in the fact that it introduced a new meta-algofdh
isomorphism rejection. This method — known as the “canonical construcitmnnpethod”
was ten years later published in a more abstract way as a general metismhforph-free
structure generation [17]. For each graptthat arises during the generation process, an
(up to isomorphism) unique reduction operation giving a pap@) is defined ands is
accepted if and only if it is generated by the extension operation that is tees@of the
unique reduction operation. Furthermore it is guaranteed that for eaehtgraph no two
extension operations that are equivalent under the automorphism greapplied.

McKay and Royle started from the 2-regular graphs and the discomhgphs with
3- or 2-regular components such that at least one component is 2datelua graph with
vertex degrees 2 and 3, an ear of lengtha sequence, v1, . ..,V such thav;_1 andy; are
adjacent (for I< i <K), v1,...,Vk_1 have degree 2 ang) andvi have degree 3, and tiwe
are distinct, except possiblyg = vi. If vp andvi are adjacent the ear is of type Oyif= vk
the ear is of type 2, and in all other cases the ear is of type 1. Examplessefdhes are
shown in Figure 6. The internal vertices of an eanate. ., vi_1 if vo # W, and all vertices
otherwise.

To construct all cubic graphs they added ears to the start graphstardéaliate graphs
as long as these graphs had vertices of degree 2. For each@rhphis to be extended,
only extensions are applied that are not equivalent under the autoistorghoup ofG —
that is: where the endpoints of the ears to be attached are not mappediontotieer by
an automorphism. In case the graph contained exactly three verticesreédtghey also



74 Gunnar Brinkmann, Jan Goedgebeur and Nico Van Cleemput

added a single vertex and connected it to the three vertices of degree 2.

They defined a vertex invariant they cgllality as the number of vertices at distance 2
plus 100 times the number of vertices at distance 3. Furthermore they uaedrical la-
belling [18, 19]-that is a way to assign labels to vertices that is unique updmagphisms
of the graph.

The parent of a graph was defined as follows:

e the start graphs do not have a parent;

e for a cubic graph, the parent is the graph obtained by deleting the vertexheith
lowest quality and if this is not unique, among them one with the lowest carionica
label;

¢ for all other intermediate graphs, the parent is the graph obtained by sgléctin
the set of ears of lowest type, the subset of those of greatest lerdytheanremoving
the internal vertices of the ear from that subset which contains the veitiexhe
lowest canonical label.

This method already contains all ingredients that make later algorithms usingtbe-c
ical construction path method so efficient.

1992: Brinkmann: 24 Vertices

The programminibaumby Brinkmann [13, 14] uses an orderly algorithm like described
by Faradev. The algorithm is tailored for cubic graphs and uses some datastrezploit-
ing similarities of graphs that are generated to speed up isomorphism rejdotik892 the
program was only used for all cubic graphs on up to 24 vertices, bueimdgantime — due
to faster computers and large clusters — it was used for up to 32 vertices.

For each graple = (V,E) withV = {1,...,|V|}, the adjacency matrita; j)1<; j <v| is
given bya; ; = 11if {i, j} € E anda; ; = 0 otherwise. One can concatenate the rows of this
0-1-matrix to form one long binary representation of a natural number.ré@sult is called
the order number of the graph. The permutation of vertex labels that ledlds targest
order number is called theanonical labellingof the graph and a graph with maximum
order number is called a maximum representative.

For each isomorphism class of cubic graphs)ibaumconstructs only the unique max-
imum representative. These graphs are constructed by inserting theiadgcreasing lex-
icographical order — so the first edges inserted are alay®}, {1,3},{1,4} as they are
present in each maximum cubic graph and are lexicographically smallesmafanum
graph is constructed by inserting the edges in lexicographical orderalhetermediate
graphs are also maximum (see [14]) which leads to the following algorithmefioerating
all cubic graphs with vertex s&t = {1,...,n}, which is an orderly algorithm in the sense
of Read and Farauabv:

e Start with the graphiV, {{1,2},{1,3},{1,4}}).

e Recursively add edges in lexicographical order. Each edge ingsreghcent to the
smallest vertex that still has a degree smaller than 3.
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e After an edge is inserted, check whether the graph is a maximum reptiasebia
trying to find a labelling that leads to a larger representation. If a largegseptation
is found: reject the graph, otherwise proceed.

e If agraphis found to be maximum and all vertices have degree 3: outpgtdpé.

It can easily be proven that the first edge inserted that closes a cyelenilees the girth
of a graph. If later an edge is inserted that lies on a smaller cycle, the igraphmaximum.
This observation avoids the construction of some graphs that are afisrfeand to be not
maximum.

The main technique that speeds up the program (and is also responsthle fiame of
the program) can be understood as follows:

For a given graptG in the construction process that is not yet 3-regular, all graphs
constructed fronG containG as a subgraph. During the test whetlBis maximum, it
may be detected that one gets smaller results when trying to assign label ltetower
already before assigning labels to a vertex with degree less than 3. If this tase, the
same will happen for all descendants®fso one can in fact store the information that it is
useless to assign label 1 to vertefor all descendants and avoid these computations.

This idea can be carried further: one can store all partial assignmelaised$ to ver-
tices of degree 3 that do not yet lead to smaller representations anasthd tlescendants
from the partial assignments instead of from scratch. This information has tpdated
in each step and therefore an efficient datastructure has to be userktthstinformation.
The progranminibaumuses a tree (German: Baum) of these partial representations.

As updating the datastructure is more expensive than just testing, this tralg tsudt
up to a certain depth in the recursion where the cost is smaller than the b&hefidepth
had to be determined by tests.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghinibaumgen-
erates about 81.500 non-isomorphic cubic graphs on 26 verticesquerdse

An advantage of the simple edge-by-edge insertion strategy is that eagh gon-
structed is a subgraph of all its descendants. So all graph propertiesr¢hiaherited by
the descendants can be — more or less — efficiently included in the gengnati@ss. This
way, e.g., graphs without small cycles, or without cycles of a given le(eth, without
odd lengths — that is: bipartite graphs) can be generated. Unfortunatelgry restricted
classes of cubic graphs (e.g., graphs with large girth), isomorphisniogjéznot the prob-
lem any more, but most partial graphs cannot be completed, what thentteaery small
generation rates.

1998: Meringer: 24 Vertices

In 1998 Meringer [20] used the same basic orderly algorithm as Brinknrafit3,
14] for his programgenregbut optimised the test whether a graph is maximum so that it
also works efficiently for regular graphs with larger degree, while the aakif [14] gets
inefficient for larger degrees.

Some of the key new ideas used come from [21] where graphs with a degree se-
guence are generated, but unlike Meringer’s program, Grundégr@mowas not optimized
for regular graphs.
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Meringer only tested the regular graphs that were to be output for beirgma and
used the concept afemicanonicitywhich is a necessary, but not sufficient criterion for
a graph to be maximum for the intermediate graphs. This criterion is less se|dutit/
much faster to test. It only tests whether certain subsets of the whole permggatigp can
produce a graph with a larger representation. These subsets asgdefinrsively. First all
permutations are chosen that fix vertex 1, among those only those thatdictghe adjacent
to 1, among those only those that fix vertex 2, etc.

The result of this faster but less restrictive criterion can be that an intiateegraph
that is not maximum could produce a large number of descendants that vii# &isted
and rejected for being not maximum. This problem is solvedeayning from elements
that are not maximum: if a regular graph is detected to be not maximum, the permutatio
giving a smaller representation often gives a smaller representationyaimeh applied
to a subgraph. I& denotes the lexicographically largest edge that occurs in the subgraph
or the image of the subgraph, the smaller labeling will be possible as long akyel ep
to eare present. So Meringer’s algorithm backtracks until the edgeemoved, as graphs
containing all edges up ®will not be maximum anyway.

These two key ideas are combined with the use of a Sims chain of nestedspbgr
of the whole permutation group allowing to compute a set of generators insteging
through all automorphisms when trying to find smaller labellings.

The result is a program that — though not designed especially for cudgithg, but for
regular graphs of given degree — showed a good performanceilfor graphs and is the
fastest program for degrees 4 or larger where it could extend somelfigiphs with
or without restricted girth. Likeninibaumalsogenregoffers the option to only generate
graphs with restricted girth or bipartite graphs.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 @enreggenerates
about 50.100 non-isomorphic cubic graphs on 26 vertices per second.

2000: Sanjmyatav and McKay

In 2000 Sanjmyatav and McKay [22] developed new generation algoritbmafious
classes of cubic graphs. The construction operations of their algoritgentrate all cubic
graphs are based on the operations from de Vries. Their two basiatigmsr are shown
in Figure 3(a) and Figure 3(b) and are called dageandtriangle operation respectively.
The inverse of a construction operation is called a reduction. Cubic graplth cannot
be reduced to a smaller cubic graph by a triangle or edge reduction wieeic@ducible
graphs By definition each cubic graph can be generated from an irreducibighgoy
recursively applying edge and/or triangle operations.

They showed that all irreducible graphs can be obtained by reclyrsipplying oper-
ation (c) from Figure 3 (where the verticbsandi may be the same) to cubic multigraphs
with loops. As only a tiny fraction of the cubic graphs are irreducible (sd®€er2), they
used a simple straightforward method to generate irreducible graphs incadvihey pro-
duced a list of irreducible graphs on up to 26 vertices which were thahasa starting
point for the generation of all cubic graphs on up to 26 vertices.

For generating the remaining cubic graphs from these irreducible gridyglysused the
canonical construction path method to avoid the generation of isomorphiescophis



The History of the Generation of Cubic Graphs

means that they computed orbits of possible extensions (orbits of pairges$ ¢al apply
operation (a) and orbits of vertices to apply operation (b)) and usedanizdty criterion
for the unique reduction of a graph that first uses some easily computablkaims and
falls back to a canonical labeling [18] in case this did not give a uniquectash to de-

cide whether the last operation is canonical in the sense of the canommsdifuction path
method.

Table 2. Number of irreducible graphs vs. number of cubic graphs

IV(G)| #irreducible graphs # cubic graphs
4 1 1
6 0 2
8 1 5
10 1 19
12 1 85

14 3 509
16 2 4060
18 5 41 301
20 4 510 489
22 9 7 319 447
24 11 117 940 535
26 16 2 094 480 864
28 32 40497 138 011
30 37 845 480 228 069
32 73 18941522 184 590

They also designed algorithms to generate more restricted classes of agdis guch
as bipartite cubic graphs or cubic graphs with girth at least 4 or 5. Forohtstse classes
they did this in two ways. In one approach they added a filter and lookdahea the
restricted graph class to the generation algorithm for all cubic grapltse lother approach
they developed a specialized construction algorithm which constructsgnapbs from the
special class in such a way that all intermediate graphs are also partspfabial class. In
most of these cases the filter approach was the more efficient one.

Unfortunately the programs were never released and we could not oerian on
modern machines. The times reported in the thesis are that the generatat tapgéeaerate
all cubic graphs is approximately 2.7 times faster thanibaumfor 20 vertices and about
1.7 times faster for 24 vertices.

This ratio may differ on modern machines as different algorithms may reéetatitly
to faster or slower memory. They give, e.g., the same time (52 secondsgfgetteration
of cubic graphs with 20 vertices lmginibaumandgenreg while on an Intel(R) Core(TM)2

Quad CPU Q8200 with 2.0 Ghz the times differ by more than 20%: 7 seconuisrfiraum
and 9 seconds fagenreg

77
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2011: Brinkmann, Goedgebeur, McKay: 32 Vertices

In 2011 Brinkmann, Goedgebeur and McKay [7] developed a newranogcalled
snharkhuntemwhich allowed to generate all cubic graphs up to 32 vertices. The construc
tion operations are based on the operations from de Vries and SanjmyekayMnd the
edge and triangle operations are again applied to generate cubic gkaplestheless there
were also several points where the algorithms differ. The new algoritlesh s@me special
optimisations to define the canonical reverse operations and generathacible graphs
(also called prime graphs) in a different way. It was shown that evenyepgraph can be
obtained by recursively applying the operations from Figure Rgin such a way that all
intermediate graphs are also prime. Both for the generation of prime gragh®mathe
generation of the remaining cubic graphs the canonical construction pétbdaneas used
to make sure no isomorphic copies are output.

The main new idea leading to a speedup was to handle graphs with isolatedeiang
in another way. Areducible triangleis a triangle which can be reduced by a triangle re-
duction. As most cubic graphs contain at least one reducible triangl§dbée 3), special
attention was paid to generating cubic graphs with reducible triangles. Ae agsed for
the canonical construction path method, graphs with reducible triangledbmashstructed
by expanding vertices to triangles. The new algorithumdledthese triangle operations.
For the reduction of graphs with reducible triangles, the idea was to redumducible
triangles at the same time. In the construction, the bundled triangle operatios iytoall
vertices in a se6 C V(G) of a graphG to triangles at the same time in such a way that
all reducible triangles in the graph obtained by applying this bundled triapgeaton are
created in this last operation. This means tBatust contain at least one vertex of every
reducible triangle inG. Orbits of vertex sets to be extended must be computed to avoid
isomorphic copies — but this is done on much fewer and much smaller grapksmak
problem is formed by a square attached to two triangles at opposite edipessofuare, as
these triangles can be reduced separately, but not in parallel. Gréhhsueh a configu-
ration — which does not occur often — come from graphs with a squarédlat diagonal.
The ratio of these graphs is very small and this case was handled bgpisepdes.

In order to make sure that only one graph is output for each isomorpléss @f cubic
graphs, a canonicity check is performed and non-canonical grapingjacted. This can be
very expensive in general. However since the graph obtained byiagphe bundled trian-
gle reduction to a cubic graph with reducible triangles is uniquely determinezhnonicity
check is required for cubic graphs with reducible triangles and no aaosical graphs are
generated by the bundled triangle operation. This significantly sped ujotbrittam.

The bundled triangle operation also helps to compute the automorphism drthg o
extended graph, which is needed in case the resulting graph has neagieéd the desired
number of vertices. In case of a trivial group of the graph to be extkritiean even be
concluded that the extended graph also has a trivial group.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Gdmarkhunter
generates about 410.300 non-isomorphic cubic graphs on 26 verdcegg@nd. Based
on the ratios withgenregand minibaumgiven in [22] this is considerably faster than the
algorithm described there.

The algorithm can also be restricted to generate cubic graphs with girthsatlea 5
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Table 3. Counts of all 2 094 480 864 connected cubic graphs with 26rtices
according to the number of reducible triangles they have

# reducible

triangles # graphs

497 010 000
774 885 044
540977 972
218 274 256
54 459 966
8183 373
666 137

23 837

279

o

O~NO O h WN P

efficiently by using look-aheads. Similar look-aheads could also be uggshrate cubic
graphs with larger lower bounds on the girth, but these look-aheadklweua lot less
efficient. For generating cubic graphs with large girth, the fastest methodtisftMcKay,
Myrvold and Nadon [23].

The main reason for the developmentsofarkhuntemwas the possibility to restrict the
generation to snarks — that is: to cyclically 4-connected cubic graphs litimatic index
4 — in a way that is more efficient than filtering all graphs. Based on the listsiarks
generated, 8 published conjectures could be refuted [24].

4. Counting the Graphs

All methods described in the previous paragraphs were constructivalite graphs
were explicitly formed and could be output and used for tests. In mathenatiamer-
ation” is also used for determining only the number of structures, but not thetlstesc
themselves. Enumerating cubic graphs in this sense, one can go much fiuatheould
be possible by constructing all the graphs. This was done by Robingbkvarmald in
1983 [8]. They used a counting technique which allowed them to calculatauthber of
cubic graphs on up to 40 vertices. Even at that time their program nebdeatl 50 hours
to calculate these numbers.

5. Restrictions and Generalisations

5.1. Restricted Classes of Cubic Graphs

As already mentioned before, several restricted classes of cubltpegalso of math-
ematical and chemical interest. Unlike, e.g., bipartite cubic graphs or culgithgmwith
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Figure 7. The three operations used by Brinkmann, Goedgebeur akdyMo construct
prime graphs.

girth 4 or 5, some of these classes can not efficiently be generated byyingdhe gener-
ators for all graphs. We will not go into details of generation algorithms feséhrestricted
classes, but just mention some of them.

As Balaban points out in [25], planar cubic graphs are, e.g., more likelgrregspond
to actual molecules and already in 1972/1976 he gave lists of small cubia gjeaphs
[26, 25] by filtering the cubic graphs he had generated. The fastasalale algorithm at
the moment also goes back to a construction method from the 19th centuryif@@ther
with an efficient algorithm for isomorphism rejection it is implemented in the progra
plantri [28]. On an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Gpiantri needs
about 1.85 seconds to generate all cubic polyhedra (3-connectedptartar graphs) on 26
vertices — which are about 1.300.000 polyhedra on 26 vertices pangeco

Things get more complicated when the class of cubic polyhedra is furtsticted.
After the discovery of the Fullerenes (that is: carbon cages with thetgteuof cubic
polyhedra with all faces of size 5 or 6) in 1985 [1], generators for doatbrial fullerenes
were needed and after a series of incomplete algorithms [29] in 1997 thedirplete
and efficient algorithm “$ullgen — was published [30] and later generalized for arbitrary
face sizes in [31]. The fastest fullerene generator nowaddyscisygerdescribed in [32].
On an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz it generatest&8000 non-
isomorphic fullerenes on 100 vertices per second.

In mathematics there are several inductive definitions known for seslasses of cu-
bic graphs, i.e., 2-connected cubic graphs, planar cubic graplmricted planar cubic
graphs, see [33] or the references in [28]. These inductive defigifjve rise to generation
programs for specialized classes (included in the program describ28])nput we won’t
describe the details here.
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Figure 8. The only connected cubic multigraph with an edge with multiplicity 3.

5.2. Generalised Cubic Graphs

Besides restricted classes of cubic graphs, also generalisationsamsrdered. Up to
this point, we have only been discussing results for connected simplesgraptanonical
generalisation is to also allow multigraphs, graphs with loops and graphs wiikesiges,
or any combination of these.

From a chemical viewpoint, multigraphs are a very natural generalisatioongider,
since atoms can form double bonds. And it was also Balaban to do thedirgiuter
enumerations: In 1966 he enumerated all cubic multigraphs on up to 10 seatickin
1967 he also added the cubic multigraphs on 12 vertices. He was interefitedergraphs
since they serve as models for the cyclopolyengsig, that contain double bonds.

A cubic multigraph can have edges with multiplicity 1, 2 or 3. There is only one con
nected cubic multigraph with an edge with multiplicity 3. This is the theta graph (shown
in Figure 8). All other cubic multigraphs can only contain edges with multiplicityd &an
Balaban generated these graphs based on the number of vertices andhther of edges
with multiplicity 2.

For the case with @vertices,p edges with multiplicity 1 angb edges with multiplicity
2, he noted that there is only one multigraph. This is the cycle pre2tices where the
edges alternatingly have multiplicity 1 and 2.

For the case with @ vertices,p -+ 2 edges with multiplicity 1 ang — 1 edges with
multiplicity 2, he divided the graphs into three categories and, based on thbenwof
vertices, gave closed formulas for the number of graphs in each of thésgories. The
three categories are:

A. The cycles with one chord (see Figure 9 for an example); The nunilggaphs in this
category is{‘%lj :

B. The cycles with an extra path between two vertices (see Figure 10 &xaamnple); The
2

number of graphs in this categoryF%J

C. Two cycles connected by a path (see Figure 11 for an example).urhleen of graphs
1 p—1

in this category IS{%J {TW

For the remaining cases, Balaban used the same techniques as for cubsogsapps,
i.e., all possible ways to connect the vertices were tried.

In 1970 Balaban revisited the generation of cubic multigraphs as part gktieration
of general cubic graphs [34, 35, 36]. A general graph is a multigtaphcan also have
loops. To generate all general cubic graphs witlertices, he applied two operations to the
general cubic graphs on— 2 vertices. These operations are:
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Figure 9. The two multigraphs on 10 vertices with 7 edges of multiplicity 1 and ésdfy
multiplicity 2, that belong to category A.

Figure 10. The only multigraphs on 10 vertices with 7 edges of multiplicity 1 ardbés
of multiplicity 2, that belong to category B.

e,

Figure 11. The four multigraphs on 10 vertices with 7 edges of multiplicity 1 aedgés
of multiplicity 2, that belong to category C.



The History of the Generation of Cubic Graphs 83

l, \\\

Figure 12. The two operations used by Balaban to generate geneiabcaphs.

1. Add two new vertices to any edge(s) or loop(s) and connect thermbwadge (see
top part of Figure 12).

2. Add a new vertex to any edge or loop and connect it by a new edgetbeamew
vertex to which also a loop is added (see bottom part of Figure 12).

This technique was used to generate all general cubic graphs on upeatit2s, start-
ing from the two general cubic graphs on two vertices: the theta graptF{gere 8) and
theK, with an extra loop incident to each vertex. The cubic multigraphs were thamel
by taking the general cubic graphs with O loops. This technique generateg graphs
several times, so the produced list of graphs was afterwards filtereldipticate graphs.

In 2012 Brinkmann, Pisanski and Van Cleemput developed a generégiotitlam for
several generalised classes of cubic graphs [37]. It can gemgeguies that can have loops,
semi-edges and multi-edges. A semi-edge is an edge that is incident to onigrtare The
algorithm can be efficiently restricted to graphs allowing only a subset eéthen-simple
edge types.

The problem of generating these generalised graphs is first transldtesigeneration
of cubic pregraph primitivesA cubic pregraph primitive is a multigraph with vertices of
degree 1 and 3. The vertices of degree 1 ultimately give rise to loops amdhdesiges,
depending on the class that is generated. To generate all cubic gremiaptives on
n vertices, the canonical construction path method is applied again. It usedsion
operations and as base graplis, the theta graph and all cubic graphs on up teertices.
The 4 operations are depicted in Figure 13.

In order to generate the cubic pregraphs that have loops or semisfedgethese cu-
bic pregraph primitives, a loop is added to each vertex of degree 1, entex\of degree
1 together with the adjacent edge is replaced by a semi-edge to the neighhorder to
generate the cubic pregraphs that have both — loops and semi-edgasthdise cubic pre-
graph primitives, the homomorphism principle [38, 39] is used to avoid isonmgopies.
For small vertex numbers the numbers obtained coincide with the numbersaBalabady
calculated in 1970. The number of structures for several classeseatek wumbers are



84 Gunnar Brinkmann, Jan Goedgebeur and Nico Van Cleemput

x
AN

’, N ’, N .,

o< s S
Se—e<] —_ D <!
it s A e —_ S— :

Figure 13. The four operation used by Brinkmann, Pisanski and Vaen@let to generate
cubic pregraph primitives.

Y =

Figure 14. An occurrence of a loop can be transformed into an edgeloplicity 2 and
vice versa.

shown in Table 4.

When run on an Intel(R) Core(TM)2 Quad CPU Q8200 with 2.0 Ghz, thgraropre-
graphsbased on this approach generates about 78.000 non-isomorphic cubiaapiisig
with loops and semi-edges on 16 vertices per second.

One observation that can be made when looking at the number of cubiaphsgs
that the numbers in column L, respectively LS, coincide with the numbers inmcoM,
respectively SM (except far= 1). This correspondence was already noted and explained
by Balaban. The reason is that each occurrence of a loop can bietraed into an edge of
multiplicity 2 and vice versa (see Figure 14). This is always possible exaetite balloon
graph (see Figure 15), which explains the differencenferl.



Table 4. The number of structures in each class of cubic pregraphfer a given number of verticesn. C stands for simple graphs, L
for graphs that have loops, S for graphs that have semi-edges, lr multigraphs, LS for graphs that have loops and semi-edges, LM
for multigraphs that have loops (i.e., general graphs), SM for multigaphs that have semi-edges and LSM for all pregraphs

n C L S M LS LM SM LSM
1 0 0 1 0 2 0 1 2
2 0 1 1 1 3 2 3 5
3 0 0 2 0 4 0 4 7
4 1 2 6 2 12 5 12 22
5 0 0 10 0 22 0 22 43
6 2 6 29 6 68 17 68 141
7 0 0 64 0 166 0 166 373
8 5 20 194 20 534 71 534 1270
9 0 0 531 0 1589 0 1589 4053
10 19 91 1733 91 5464 388 5464 14671
11 0 0 5524 0 18 579 0 18579 52 826
12 85 509 19430 509 68 320 2592 68 320 203 289
13 0 0 69 322 0 255424 0 255424 795581
14 509 3608 262 044 3608 1000 852 21096 1000 852 3241 367
15 0 0 1016 740 0 4018 156 0 4018 156 13504 130
16 4060 31856 4101318 31856 16671976 204 638 16671976 57M04 6
17 0 0 16 996 157 0 70 890 940 0 70 890 940 253 856 990
18 41 301 340416 72 556 640 340 416 309 439 942 2317172 309 £39 941 139 231 977
19 0 0 317558 689 0 1381815168 0 1381815168 5219113084
20 510489 4269971 1424 644 848 4269971 6310880471 30024 276310 80471 24 401 837 085
21 0 0 6 536 588 420 0 29428287639 0 29428287639 116278408 069
22 7319447 61133757 30647561117 61133757 140012980007 4696359 140012980007 564 380 686 932
23 0 0 146647 344812 0 0
24 117940535 978098 997 978 098 997 7067 109 598
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¢

Figure 15. The balloon graph is the only graph in which the loop cannotabsfarmed
into an edge of multiplicity 2.

Conclusion

The large number of different and increasingly fast approachesergie cubic graphs
gives a hint about the importance of this class. In the long series of cotigmataap-
proaches there are always two special ones:

the first approach and the last approach. While the last approach iwaitigg for the
next algorithm that is even faster, the first approach will always remaiffitst — and for
cubic simple graphs as well as cubic multigraphs, it will always be the namealabBn
standing for these approaches.

Not many examples of scientists can be found that not only made importamibcen
tions at young age, but also — with more than 80 years and more than S0afeartheir
Ph.D. — still contribute innovative scientific ideas. A.T. Balaban is one ofahe We want
to express our gratitude for the honour to have met this outstanding sciemtsstveral
conferences.
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